Zongzheng Sun, Xinjian Niu, Kai Jia, Jianwei Liu, Yinghui Liu
{"title":"基于主动拒绝跟踪系统设计的改进立方卡尔曼滤波器状态预测方法。","authors":"Zongzheng Sun, Xinjian Niu, Kai Jia, Jianwei Liu, Yinghui Liu","doi":"10.1063/5.0211808","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, an improved CKF (Cubature Kalman Filter) target tracking method is adopted to solve the tracking and pointing problem in the field of the Active Denial System. The math model of the system is built and the precision requirement is analyzed. The improved CKF method is input as the feedforward compensation for system control to improve the system tracking performance. In the process of the iterative CKF algorithm, nonlinear means are used. The method makes full use of measurement information and estimates the target velocity acceleration model parameters through the neural network, which is used as the input of the CKF to modify the process parameters of CKF and improve the state estimation accuracy. At the same time, the limited lower bound method is used to ensure that the gain reaches the lower bound bottom line of the precision demand, so that it does not tend to zero with time, so as to avoid affecting its rapid response ability during maneuvering and so that the prediction error is also controlled within the range of the precision demand. The simulation and experimental results show the superiority of the method and make the system fully meet the design requirements.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved cubature Kalman filter state prediction method based on the design of active denial tracking system.\",\"authors\":\"Zongzheng Sun, Xinjian Niu, Kai Jia, Jianwei Liu, Yinghui Liu\",\"doi\":\"10.1063/5.0211808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, an improved CKF (Cubature Kalman Filter) target tracking method is adopted to solve the tracking and pointing problem in the field of the Active Denial System. The math model of the system is built and the precision requirement is analyzed. The improved CKF method is input as the feedforward compensation for system control to improve the system tracking performance. In the process of the iterative CKF algorithm, nonlinear means are used. The method makes full use of measurement information and estimates the target velocity acceleration model parameters through the neural network, which is used as the input of the CKF to modify the process parameters of CKF and improve the state estimation accuracy. At the same time, the limited lower bound method is used to ensure that the gain reaches the lower bound bottom line of the precision demand, so that it does not tend to zero with time, so as to avoid affecting its rapid response ability during maneuvering and so that the prediction error is also controlled within the range of the precision demand. The simulation and experimental results show the superiority of the method and make the system fully meet the design requirements.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0211808\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0211808","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An improved cubature Kalman filter state prediction method based on the design of active denial tracking system.
In this paper, an improved CKF (Cubature Kalman Filter) target tracking method is adopted to solve the tracking and pointing problem in the field of the Active Denial System. The math model of the system is built and the precision requirement is analyzed. The improved CKF method is input as the feedforward compensation for system control to improve the system tracking performance. In the process of the iterative CKF algorithm, nonlinear means are used. The method makes full use of measurement information and estimates the target velocity acceleration model parameters through the neural network, which is used as the input of the CKF to modify the process parameters of CKF and improve the state estimation accuracy. At the same time, the limited lower bound method is used to ensure that the gain reaches the lower bound bottom line of the precision demand, so that it does not tend to zero with time, so as to avoid affecting its rapid response ability during maneuvering and so that the prediction error is also controlled within the range of the precision demand. The simulation and experimental results show the superiority of the method and make the system fully meet the design requirements.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.