微生物群落组成可预测整个海洋生态系统的细菌产量。

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY ISME Journal Pub Date : 2024-01-08 DOI:10.1093/ismejo/wrae158
Elizabeth Connors, Avishek Dutta, Rebecca Trinh, Natalia Erazo, Srishti Dasarathy, Hugh Ducklow, J L Weissman, Yi-Chun Yeh, Oscar Schofield, Deborah Steinberg, Jed Fuhrman, Jeff S Bowman
{"title":"微生物群落组成可预测整个海洋生态系统的细菌产量。","authors":"Elizabeth Connors, Avishek Dutta, Rebecca Trinh, Natalia Erazo, Srishti Dasarathy, Hugh Ducklow, J L Weissman, Yi-Chun Yeh, Oscar Schofield, Deborah Steinberg, Jed Fuhrman, Jeff S Bowman","doi":"10.1093/ismejo/wrae158","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial ecological functions are an emergent property of community composition. For some ecological functions, this link is strong enough that community composition can be used to estimate the quantity of an ecological function. Here, we apply random forest regression models to compare the predictive performance of community composition and environmental data for bacterial production (BP). Using data from two independent long-term ecological research sites-Palmer LTER in Antarctica and Station SPOT in California-we found that community composition was a strong predictor of BP. The top performing model achieved an R2 of 0.84 and RMSE of 20.2 pmol L-1 hr-1 on independent validation data, outperforming a model based solely on environmental data (R2 = 0.32, RMSE = 51.4 pmol L-1 hr-1). We then operationalized our top performing model, estimating BP for 346 Antarctic samples from 2015 to 2020 for which only community composition data were available. Our predictions resolved spatial trends in BP with significance in the Antarctic (P value = 1 × 10-4) and highlighted important taxa for BP across ocean basins. Our results demonstrate a strong link between microbial community composition and microbial ecosystem function and begin to leverage long-term datasets to construct models of BP based on microbial community composition.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385589/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microbial community composition predicts bacterial production across ocean ecosystems.\",\"authors\":\"Elizabeth Connors, Avishek Dutta, Rebecca Trinh, Natalia Erazo, Srishti Dasarathy, Hugh Ducklow, J L Weissman, Yi-Chun Yeh, Oscar Schofield, Deborah Steinberg, Jed Fuhrman, Jeff S Bowman\",\"doi\":\"10.1093/ismejo/wrae158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial ecological functions are an emergent property of community composition. For some ecological functions, this link is strong enough that community composition can be used to estimate the quantity of an ecological function. Here, we apply random forest regression models to compare the predictive performance of community composition and environmental data for bacterial production (BP). Using data from two independent long-term ecological research sites-Palmer LTER in Antarctica and Station SPOT in California-we found that community composition was a strong predictor of BP. The top performing model achieved an R2 of 0.84 and RMSE of 20.2 pmol L-1 hr-1 on independent validation data, outperforming a model based solely on environmental data (R2 = 0.32, RMSE = 51.4 pmol L-1 hr-1). We then operationalized our top performing model, estimating BP for 346 Antarctic samples from 2015 to 2020 for which only community composition data were available. Our predictions resolved spatial trends in BP with significance in the Antarctic (P value = 1 × 10-4) and highlighted important taxa for BP across ocean basins. Our results demonstrate a strong link between microbial community composition and microbial ecosystem function and begin to leverage long-term datasets to construct models of BP based on microbial community composition.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385589/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae158\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae158","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物生态功能是群落组成的一种新兴属性。对于某些生态功能来说,这种联系足够紧密,以至于群落组成可以用来估计生态功能的数量。在此,我们采用随机森林回归模型来比较群落组成和环境数据对细菌产量(BP)的预测性能。利用两个独立的长期生态研究地点--南极洲的帕尔默 LTER 和加利福尼亚的 SPOT 站--的数据,我们发现群落组成对 BP 有很强的预测作用。在独立验证数据上,表现最好的模型的 R2 为 0.84,RMSE 为 20.2 pmol L-1 hr-1,优于仅基于环境数据的模型(R2 = 0.32,RMSE = 51.4 pmol L-1 hr-1)。然后,我们对表现最佳的模型进行了操作,估计了 2015-2020 年间 346 个南极样本的生物量,这些样本只有群落组成数据。我们的预测解决了南极地区生物浓缩的空间趋势问题(P 值 = 1 x 10-4),并强调了各大洋盆地生物浓缩的重要分类群。我们的研究结果证明了微生物群落组成与微生物生态系统功能之间的密切联系,并开始利用长期数据集构建基于微生物群落组成的生物量模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial community composition predicts bacterial production across ocean ecosystems.

Microbial ecological functions are an emergent property of community composition. For some ecological functions, this link is strong enough that community composition can be used to estimate the quantity of an ecological function. Here, we apply random forest regression models to compare the predictive performance of community composition and environmental data for bacterial production (BP). Using data from two independent long-term ecological research sites-Palmer LTER in Antarctica and Station SPOT in California-we found that community composition was a strong predictor of BP. The top performing model achieved an R2 of 0.84 and RMSE of 20.2 pmol L-1 hr-1 on independent validation data, outperforming a model based solely on environmental data (R2 = 0.32, RMSE = 51.4 pmol L-1 hr-1). We then operationalized our top performing model, estimating BP for 346 Antarctic samples from 2015 to 2020 for which only community composition data were available. Our predictions resolved spatial trends in BP with significance in the Antarctic (P value = 1 × 10-4) and highlighted important taxa for BP across ocean basins. Our results demonstrate a strong link between microbial community composition and microbial ecosystem function and begin to leverage long-term datasets to construct models of BP based on microbial community composition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
期刊最新文献
Spatial sensing as a strategy for public goods regulation by gut microbes. Impact of timing on the invasion of synthetic bacterial communities. Biotics and bacterial function: impact on gut and host health. Saccharomyces boulardii enhances anti-inflammatory effectors and AhR activation via metabolic interactions in probiotic communities. Reversed oxidative TCA (roTCA) for carbon fixation by an Acidimicrobiia strain from a saline lake.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1