{"title":"时间--免疫细胞的第四个维度。","authors":"Guiming Li, Wenjun Zhang, Jing Yang","doi":"10.1002/mco2.682","DOIUrl":null,"url":null,"abstract":"<p>Deciphering the intricate cell-state transitions orchestrating immune adaptation over time stands as a cornerstone for advancing biological understanding. However, the lack of empirical in vivo genomic technologies capable of capturing cellular dynamics has posed a significant challenge. In response to this gap, a groundbreaking study introduces Zman-seq, a single-cell technology that records transcriptomic dynamics across time by incorporating time stamps into circulating immune cells, enabling their tracking in tissues for extended periods. The application of Zman-seq in glioblastoma research has successfully unraveled the cell state and molecular trajectories underlying the dysfunctional immune microenvironment. Understanding the temporal aspects of cell-state transitions during immune responses is pivotal for advancing our knowledge in biology. The emergence of Zman-seq addresses the current limitations in empirical in vivo genomic technologies, offering a revolutionary approach to studying the dynamics of immune cells over time. This highlight comprehensively explores the implications of Zman-seq in resolving cell-state transitions and molecular trajectories within the dysfunctional immune microenvironment in different types of immunotherapy. This technique has particular potential for chimeric antigen receptor T-cell therapy, overriding drug resistance, clinical medication optimization, and facilitating drug development. In particular, this article discusses potential strategies for improving the efficacy of clinical treatments.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298545/pdf/","citationCount":"0","resultStr":"{\"title\":\"Time – The fourth dimension of immune cells\",\"authors\":\"Guiming Li, Wenjun Zhang, Jing Yang\",\"doi\":\"10.1002/mco2.682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deciphering the intricate cell-state transitions orchestrating immune adaptation over time stands as a cornerstone for advancing biological understanding. However, the lack of empirical in vivo genomic technologies capable of capturing cellular dynamics has posed a significant challenge. In response to this gap, a groundbreaking study introduces Zman-seq, a single-cell technology that records transcriptomic dynamics across time by incorporating time stamps into circulating immune cells, enabling their tracking in tissues for extended periods. The application of Zman-seq in glioblastoma research has successfully unraveled the cell state and molecular trajectories underlying the dysfunctional immune microenvironment. Understanding the temporal aspects of cell-state transitions during immune responses is pivotal for advancing our knowledge in biology. The emergence of Zman-seq addresses the current limitations in empirical in vivo genomic technologies, offering a revolutionary approach to studying the dynamics of immune cells over time. This highlight comprehensively explores the implications of Zman-seq in resolving cell-state transitions and molecular trajectories within the dysfunctional immune microenvironment in different types of immunotherapy. This technique has particular potential for chimeric antigen receptor T-cell therapy, overriding drug resistance, clinical medication optimization, and facilitating drug development. In particular, this article discusses potential strategies for improving the efficacy of clinical treatments.</p>\",\"PeriodicalId\":94133,\"journal\":{\"name\":\"MedComm\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298545/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mco2.682\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Deciphering the intricate cell-state transitions orchestrating immune adaptation over time stands as a cornerstone for advancing biological understanding. However, the lack of empirical in vivo genomic technologies capable of capturing cellular dynamics has posed a significant challenge. In response to this gap, a groundbreaking study introduces Zman-seq, a single-cell technology that records transcriptomic dynamics across time by incorporating time stamps into circulating immune cells, enabling their tracking in tissues for extended periods. The application of Zman-seq in glioblastoma research has successfully unraveled the cell state and molecular trajectories underlying the dysfunctional immune microenvironment. Understanding the temporal aspects of cell-state transitions during immune responses is pivotal for advancing our knowledge in biology. The emergence of Zman-seq addresses the current limitations in empirical in vivo genomic technologies, offering a revolutionary approach to studying the dynamics of immune cells over time. This highlight comprehensively explores the implications of Zman-seq in resolving cell-state transitions and molecular trajectories within the dysfunctional immune microenvironment in different types of immunotherapy. This technique has particular potential for chimeric antigen receptor T-cell therapy, overriding drug resistance, clinical medication optimization, and facilitating drug development. In particular, this article discusses potential strategies for improving the efficacy of clinical treatments.