{"title":"跨尺度共享微生物新陈代谢的定量原则","authors":"Daniel Sher, Daniel Segrè, Michael J. Follows","doi":"10.1038/s41564-024-01764-0","DOIUrl":null,"url":null,"abstract":"Metabolism is the complex network of chemical reactions occurring within every cell and organism, maintaining life, mediating ecosystem processes and affecting Earth’s climate. Experiments and models of microbial metabolism often focus on one specific scale, overlooking the connectivity between molecules, cells and ecosystems. Here we highlight quantitative metabolic principles that exhibit commonalities across scales, which we argue could help to achieve an integrated perspective on microbial life. Mass, electron and energy balance provide quantitative constraints on their flow within metabolic networks, organisms and ecosystems, shaping how each responds to its environment. The mechanisms underlying these flows, such as enzyme–substrate interactions, often involve encounter and handling stages that are represented by equations similar to those for cells and resources, or predators and prey. We propose that these formal similarities reflect shared principles and discuss how their investigation through experiments and models may contribute to a common language for studying microbial metabolism across scales. Mass, electron and energy balances define metabolic networks in a cell, but this framework could also be applied to interactions, ecosystems and global processes, creating a common language for microbial metabolism across scales.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 8","pages":"1940-1953"},"PeriodicalIF":20.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative principles of microbial metabolism shared across scales\",\"authors\":\"Daniel Sher, Daniel Segrè, Michael J. Follows\",\"doi\":\"10.1038/s41564-024-01764-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metabolism is the complex network of chemical reactions occurring within every cell and organism, maintaining life, mediating ecosystem processes and affecting Earth’s climate. Experiments and models of microbial metabolism often focus on one specific scale, overlooking the connectivity between molecules, cells and ecosystems. Here we highlight quantitative metabolic principles that exhibit commonalities across scales, which we argue could help to achieve an integrated perspective on microbial life. Mass, electron and energy balance provide quantitative constraints on their flow within metabolic networks, organisms and ecosystems, shaping how each responds to its environment. The mechanisms underlying these flows, such as enzyme–substrate interactions, often involve encounter and handling stages that are represented by equations similar to those for cells and resources, or predators and prey. We propose that these formal similarities reflect shared principles and discuss how their investigation through experiments and models may contribute to a common language for studying microbial metabolism across scales. Mass, electron and energy balances define metabolic networks in a cell, but this framework could also be applied to interactions, ecosystems and global processes, creating a common language for microbial metabolism across scales.\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"9 8\",\"pages\":\"1940-1953\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41564-024-01764-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-024-01764-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Quantitative principles of microbial metabolism shared across scales
Metabolism is the complex network of chemical reactions occurring within every cell and organism, maintaining life, mediating ecosystem processes and affecting Earth’s climate. Experiments and models of microbial metabolism often focus on one specific scale, overlooking the connectivity between molecules, cells and ecosystems. Here we highlight quantitative metabolic principles that exhibit commonalities across scales, which we argue could help to achieve an integrated perspective on microbial life. Mass, electron and energy balance provide quantitative constraints on their flow within metabolic networks, organisms and ecosystems, shaping how each responds to its environment. The mechanisms underlying these flows, such as enzyme–substrate interactions, often involve encounter and handling stages that are represented by equations similar to those for cells and resources, or predators and prey. We propose that these formal similarities reflect shared principles and discuss how their investigation through experiments and models may contribute to a common language for studying microbial metabolism across scales. Mass, electron and energy balances define metabolic networks in a cell, but this framework could also be applied to interactions, ecosystems and global processes, creating a common language for microbial metabolism across scales.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.