{"title":"利用无人飞行器的近红外/西红外高光谱成像技术评估不同灌溉条件葡萄园的葡萄水分状况","authors":"E. Laroche-Pinel, K. R. Vasquez, L. Brillante","doi":"10.1007/s11119-024-10170-9","DOIUrl":null,"url":null,"abstract":"<p>Remote sensing is now a valued solution for more accurately budgeting water supply by identifying spectral and spatial information. A study was put in place in a <i>Vitis vinifera</i> L. cv. Cabernet-Sauvignon vineyard in the San Joaquin Valley, CA, USA, where a variable rate automated irrigation system was installed to irrigate vines with twelve different water regimes in four randomized replicates, totaling 48 experimental zones. The purpose of this experimental design was to create variability in grapevine water status, in order to produce a robust dataset for modeling purposes. Throughout the growing season, spectral data within these zones was gathered using a Near InfraRed (NIR) - Short Wavelength Infrared (SWIR) hyperspectral camera (900 to 1700 nm) mounted on an Unmanned Aircraft Vehicle (UAV). Given the high water-absorption in this spectral domain, this sensor was deployed to assess grapevine stem water potential, Ψ<sub>stem</sub>, a standard reference for water status assessment in plants, from pure grapevine pixels in hyperspectral images. The Ψ<sub>stem</sub> was acquired simultaneously in the field from bunch closure to harvest and modeled via machine-learning methods using the remotely sensed NIR-SWIR data as predictors in regression and classification modes (classes consisted of physiologically different water stress levels). Hyperspectral images were converted to bottom of atmosphere reflectance using standard panels on the ground and through the Quick Atmospheric Correction Method (QUAC) and the results were compared. The best models used data obtained with standard panels on the ground and allowed predicting Ψ<sub>stem</sub> values with an R<sup>2</sup> of 0.54 and an RMSE of 0.11 MPa as estimated in cross-validation, and the best classification reached an accuracy of 74%. This project aims to develop new methods for precisely monitoring and managing irrigation in vineyards while providing useful information about plant physiology response to deficit irrigation.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing grapevine water status in a variably irrigated vineyard with NIR/SWIR hyperspectral imaging from UAV\",\"authors\":\"E. Laroche-Pinel, K. R. Vasquez, L. Brillante\",\"doi\":\"10.1007/s11119-024-10170-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Remote sensing is now a valued solution for more accurately budgeting water supply by identifying spectral and spatial information. A study was put in place in a <i>Vitis vinifera</i> L. cv. Cabernet-Sauvignon vineyard in the San Joaquin Valley, CA, USA, where a variable rate automated irrigation system was installed to irrigate vines with twelve different water regimes in four randomized replicates, totaling 48 experimental zones. The purpose of this experimental design was to create variability in grapevine water status, in order to produce a robust dataset for modeling purposes. Throughout the growing season, spectral data within these zones was gathered using a Near InfraRed (NIR) - Short Wavelength Infrared (SWIR) hyperspectral camera (900 to 1700 nm) mounted on an Unmanned Aircraft Vehicle (UAV). Given the high water-absorption in this spectral domain, this sensor was deployed to assess grapevine stem water potential, Ψ<sub>stem</sub>, a standard reference for water status assessment in plants, from pure grapevine pixels in hyperspectral images. The Ψ<sub>stem</sub> was acquired simultaneously in the field from bunch closure to harvest and modeled via machine-learning methods using the remotely sensed NIR-SWIR data as predictors in regression and classification modes (classes consisted of physiologically different water stress levels). Hyperspectral images were converted to bottom of atmosphere reflectance using standard panels on the ground and through the Quick Atmospheric Correction Method (QUAC) and the results were compared. The best models used data obtained with standard panels on the ground and allowed predicting Ψ<sub>stem</sub> values with an R<sup>2</sup> of 0.54 and an RMSE of 0.11 MPa as estimated in cross-validation, and the best classification reached an accuracy of 74%. This project aims to develop new methods for precisely monitoring and managing irrigation in vineyards while providing useful information about plant physiology response to deficit irrigation.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-024-10170-9\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10170-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessing grapevine water status in a variably irrigated vineyard with NIR/SWIR hyperspectral imaging from UAV
Remote sensing is now a valued solution for more accurately budgeting water supply by identifying spectral and spatial information. A study was put in place in a Vitis vinifera L. cv. Cabernet-Sauvignon vineyard in the San Joaquin Valley, CA, USA, where a variable rate automated irrigation system was installed to irrigate vines with twelve different water regimes in four randomized replicates, totaling 48 experimental zones. The purpose of this experimental design was to create variability in grapevine water status, in order to produce a robust dataset for modeling purposes. Throughout the growing season, spectral data within these zones was gathered using a Near InfraRed (NIR) - Short Wavelength Infrared (SWIR) hyperspectral camera (900 to 1700 nm) mounted on an Unmanned Aircraft Vehicle (UAV). Given the high water-absorption in this spectral domain, this sensor was deployed to assess grapevine stem water potential, Ψstem, a standard reference for water status assessment in plants, from pure grapevine pixels in hyperspectral images. The Ψstem was acquired simultaneously in the field from bunch closure to harvest and modeled via machine-learning methods using the remotely sensed NIR-SWIR data as predictors in regression and classification modes (classes consisted of physiologically different water stress levels). Hyperspectral images were converted to bottom of atmosphere reflectance using standard panels on the ground and through the Quick Atmospheric Correction Method (QUAC) and the results were compared. The best models used data obtained with standard panels on the ground and allowed predicting Ψstem values with an R2 of 0.54 and an RMSE of 0.11 MPa as estimated in cross-validation, and the best classification reached an accuracy of 74%. This project aims to develop new methods for precisely monitoring and managing irrigation in vineyards while providing useful information about plant physiology response to deficit irrigation.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.