Quanwei Yu , Chao Song , Liyun Bi , Shuang Zhao , Qian Lei , Na Yang , Hai Chen , Yuxi Wang , Yang He , Hui Deng
{"title":"作为可逆性单酰基甘油脂肪酶 (MAGL) 抑制剂的萘酰胺衍生物的设计、合成和生物学评价。","authors":"Quanwei Yu , Chao Song , Liyun Bi , Shuang Zhao , Qian Lei , Na Yang , Hai Chen , Yuxi Wang , Yang He , Hui Deng","doi":"10.1016/j.bmc.2024.117844","DOIUrl":null,"url":null,"abstract":"<div><p>Monoacylglycerol lipase (MAGL) is a key enzyme responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG), and has attracted great interest due to its involvement in various physiological and pathological processes, such as cancer progression. In the past, a number of covalent irreversible inhibitors have been reported for MAGL, however, experimental evidence highlighted some drawbacks associated with the use of these irreversible agents. Therefore, efforts were mainly focused on the development of reversible MAGL inhibitor in recent years. Here, we designed and synthesized a series of naphthyl amide derivatives (<strong>12</strong>–<strong>39</strong>) as another type of reversible MAGL inhibitors, exemplified by <strong>± 34</strong>, which displayed good MAGL inhibition with a pIC<sub>50</sub> of 7.1, and the potency and selectivity against endogenous MAGL were further demonstrated by competitive ABPP. Moreover, the compound showed appreciable antiproliferative activities against several cancer cells, including H460, HT29, CT-26, Huh7 and HCCLM-3. The investigations culminated in the discovery of the naphthyl amide derivative <strong>± 34</strong>, and it may represent as a new scaffold for MAGL inhibitor development, particularly for the reversible ones.</p></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"111 ","pages":"Article 117844"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis and biological evaluation of naphthyl amide derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors\",\"authors\":\"Quanwei Yu , Chao Song , Liyun Bi , Shuang Zhao , Qian Lei , Na Yang , Hai Chen , Yuxi Wang , Yang He , Hui Deng\",\"doi\":\"10.1016/j.bmc.2024.117844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monoacylglycerol lipase (MAGL) is a key enzyme responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG), and has attracted great interest due to its involvement in various physiological and pathological processes, such as cancer progression. In the past, a number of covalent irreversible inhibitors have been reported for MAGL, however, experimental evidence highlighted some drawbacks associated with the use of these irreversible agents. Therefore, efforts were mainly focused on the development of reversible MAGL inhibitor in recent years. Here, we designed and synthesized a series of naphthyl amide derivatives (<strong>12</strong>–<strong>39</strong>) as another type of reversible MAGL inhibitors, exemplified by <strong>± 34</strong>, which displayed good MAGL inhibition with a pIC<sub>50</sub> of 7.1, and the potency and selectivity against endogenous MAGL were further demonstrated by competitive ABPP. Moreover, the compound showed appreciable antiproliferative activities against several cancer cells, including H460, HT29, CT-26, Huh7 and HCCLM-3. The investigations culminated in the discovery of the naphthyl amide derivative <strong>± 34</strong>, and it may represent as a new scaffold for MAGL inhibitor development, particularly for the reversible ones.</p></div>\",\"PeriodicalId\":255,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry\",\"volume\":\"111 \",\"pages\":\"Article 117844\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096808962400258X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096808962400258X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design, synthesis and biological evaluation of naphthyl amide derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors
Monoacylglycerol lipase (MAGL) is a key enzyme responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG), and has attracted great interest due to its involvement in various physiological and pathological processes, such as cancer progression. In the past, a number of covalent irreversible inhibitors have been reported for MAGL, however, experimental evidence highlighted some drawbacks associated with the use of these irreversible agents. Therefore, efforts were mainly focused on the development of reversible MAGL inhibitor in recent years. Here, we designed and synthesized a series of naphthyl amide derivatives (12–39) as another type of reversible MAGL inhibitors, exemplified by ± 34, which displayed good MAGL inhibition with a pIC50 of 7.1, and the potency and selectivity against endogenous MAGL were further demonstrated by competitive ABPP. Moreover, the compound showed appreciable antiproliferative activities against several cancer cells, including H460, HT29, CT-26, Huh7 and HCCLM-3. The investigations culminated in the discovery of the naphthyl amide derivative ± 34, and it may represent as a new scaffold for MAGL inhibitor development, particularly for the reversible ones.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.