大鼠体内 Aegiceras corniculatum Sakurasosaponin 全面代谢物谱分析的高效综合策略

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current drug metabolism Pub Date : 2024-08-06 DOI:10.2174/0113892002299923240801092101
Xiangying Wang, Xiao Yang, Erwei Hao, Jinling Xie, Zhengcai Du, Jiagang Deng, Xiaotao Hou, Wei Wei
{"title":"大鼠体内 Aegiceras corniculatum Sakurasosaponin 全面代谢物谱分析的高效综合策略","authors":"Xiangying Wang, Xiao Yang, Erwei Hao, Jinling Xie, Zhengcai Du, Jiagang Deng, Xiaotao Hou, Wei Wei","doi":"10.2174/0113892002299923240801092101","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Sakurasosaponin, a primary bioactive saponin from Aegiceras corniculatum, shows potential as an anti-cancer agent. However, there is a lack of information on its in vivo metabolism. This study aims to profile the in vivo metabolites of sakurasosaponin in rat feces, urine, and plasma after oral administration. An efficient strategy using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was developed, which combined metabolic prediction, multiple mass defects filtering, and highresolution extracted ion chromatograms for rapid and systematic analysis.</p><p><strong>Methods: </strong>Firstly, a theoretical list of metabolites for sakurasosaponin was developed. This was done by considering the metabolic pathways of saponins. Next, the multiple mass defects filtering method was employed to identify potential metabolites in feces and urine, using the unique metabolites of sakurasosaponin as multiple mass defects filtering templates. Subsequently, a high-resolution extracted ion chromatogram was used to quickly determine the metabolites in rat plasma post-identification in feces and urine. Lastly, the analysis of accurate mass, typical neutral loss, and diagnostic ion of the candidate metabolites was carried out to confirm their structural elucidation, and metabolic pathways of sakurasosaponin in vivo were also proposed.</p><p><strong>Results: </strong>In total, 30 metabolites were provisionally identified in feces, urine, and plasma. Analysis of metabolic pathways revealed isomerization, deglycosylation, oxidation, hydroxylation, sulfate conjugation, glucuronide conjugation, and other related reactions as the primary biotransformation reactions of sakurasosaponin in vivo.</p><p><strong>Conclusion: </strong>The findings demonstrate that the designed research strategy effectively minimizes matrix interference, prevents the omission of low-concentration metabolites, and serves as a foundation for the discovery of active metabolites of sakurasosaponin.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Integrated Strategy for Comprehensive Metabolite Profiling of Sakurasosaponin from Aegiceras corniculatum in Rats.\",\"authors\":\"Xiangying Wang, Xiao Yang, Erwei Hao, Jinling Xie, Zhengcai Du, Jiagang Deng, Xiaotao Hou, Wei Wei\",\"doi\":\"10.2174/0113892002299923240801092101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Sakurasosaponin, a primary bioactive saponin from Aegiceras corniculatum, shows potential as an anti-cancer agent. However, there is a lack of information on its in vivo metabolism. This study aims to profile the in vivo metabolites of sakurasosaponin in rat feces, urine, and plasma after oral administration. An efficient strategy using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was developed, which combined metabolic prediction, multiple mass defects filtering, and highresolution extracted ion chromatograms for rapid and systematic analysis.</p><p><strong>Methods: </strong>Firstly, a theoretical list of metabolites for sakurasosaponin was developed. This was done by considering the metabolic pathways of saponins. Next, the multiple mass defects filtering method was employed to identify potential metabolites in feces and urine, using the unique metabolites of sakurasosaponin as multiple mass defects filtering templates. Subsequently, a high-resolution extracted ion chromatogram was used to quickly determine the metabolites in rat plasma post-identification in feces and urine. Lastly, the analysis of accurate mass, typical neutral loss, and diagnostic ion of the candidate metabolites was carried out to confirm their structural elucidation, and metabolic pathways of sakurasosaponin in vivo were also proposed.</p><p><strong>Results: </strong>In total, 30 metabolites were provisionally identified in feces, urine, and plasma. Analysis of metabolic pathways revealed isomerization, deglycosylation, oxidation, hydroxylation, sulfate conjugation, glucuronide conjugation, and other related reactions as the primary biotransformation reactions of sakurasosaponin in vivo.</p><p><strong>Conclusion: </strong>The findings demonstrate that the designed research strategy effectively minimizes matrix interference, prevents the omission of low-concentration metabolites, and serves as a foundation for the discovery of active metabolites of sakurasosaponin.</p>\",\"PeriodicalId\":10770,\"journal\":{\"name\":\"Current drug metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892002299923240801092101\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002299923240801092101","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:Sakurasosaponin 是一种来自 Aegiceras corniculatum 的主要生物活性皂苷,具有抗癌潜力。然而,目前缺乏有关其体内代谢的信息。本研究旨在分析大鼠口服樱苷后粪便、尿液和血浆中樱苷的体内代谢产物。该研究采用超高效液相色谱/四极杆飞行时间质谱技术,结合代谢预测、多重质量缺陷过滤和高分辨率提取离子色谱,建立了一套高效的分析方法:首先,建立了樱草皂苷的理论代谢物清单。首先,通过考虑皂苷的代谢途径,制定了樱草皂苷的理论代谢物清单。其次,采用多重质量缺陷过滤法,以樱草皂苷的独特代谢物为多重质量缺陷过滤模板,识别粪便和尿液中的潜在代谢物。随后,利用高分辨率提取离子色谱图快速确定粪便和尿液中鉴定后大鼠血浆中的代谢物。最后,对候选代谢物的准确质量、典型中性损失和诊断离子进行了分析,以确认其结构的阐明,并提出了樱草皂苷在体内的代谢途径:结果:在粪便、尿液和血浆中总共初步鉴定出 30 种代谢物。代谢途径分析表明,异构化、脱糖基化、氧化、羟基化、硫酸酯共轭、葡萄糖醛酸共轭及其他相关反应是矢车菊皂苷在体内的主要生物转化反应:研究结果表明,所设计的研究策略有效地减少了基质干扰,避免了低浓度代谢物的遗漏,为发现樱草皂苷的活性代谢物奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Integrated Strategy for Comprehensive Metabolite Profiling of Sakurasosaponin from Aegiceras corniculatum in Rats.

Objective: Sakurasosaponin, a primary bioactive saponin from Aegiceras corniculatum, shows potential as an anti-cancer agent. However, there is a lack of information on its in vivo metabolism. This study aims to profile the in vivo metabolites of sakurasosaponin in rat feces, urine, and plasma after oral administration. An efficient strategy using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry was developed, which combined metabolic prediction, multiple mass defects filtering, and highresolution extracted ion chromatograms for rapid and systematic analysis.

Methods: Firstly, a theoretical list of metabolites for sakurasosaponin was developed. This was done by considering the metabolic pathways of saponins. Next, the multiple mass defects filtering method was employed to identify potential metabolites in feces and urine, using the unique metabolites of sakurasosaponin as multiple mass defects filtering templates. Subsequently, a high-resolution extracted ion chromatogram was used to quickly determine the metabolites in rat plasma post-identification in feces and urine. Lastly, the analysis of accurate mass, typical neutral loss, and diagnostic ion of the candidate metabolites was carried out to confirm their structural elucidation, and metabolic pathways of sakurasosaponin in vivo were also proposed.

Results: In total, 30 metabolites were provisionally identified in feces, urine, and plasma. Analysis of metabolic pathways revealed isomerization, deglycosylation, oxidation, hydroxylation, sulfate conjugation, glucuronide conjugation, and other related reactions as the primary biotransformation reactions of sakurasosaponin in vivo.

Conclusion: The findings demonstrate that the designed research strategy effectively minimizes matrix interference, prevents the omission of low-concentration metabolites, and serves as a foundation for the discovery of active metabolites of sakurasosaponin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current drug metabolism
Current drug metabolism 医学-生化与分子生物学
CiteScore
4.30
自引率
4.30%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism. More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.
期刊最新文献
Quality by Design Approach for the Development of Cariprazine Hydrochloride Loaded Lipid-Based Formulation for Brain Delivery via Intranasal Route. Ceftobiprole and Cefiderocol for Patients on Extracorporeal Membrane Oxygenation: The Role of Therapeutic Drug Monitoring. Development of Hot Melt Extruded Co-Formulated Artesunate and AmodiaquineSoluplus® Solid Dispersion System in Fixed-Dose Form: Amorphous State Characterization and Pharmacokinetic Evaluation. Metabolic Stability and Metabolite Identification of CYP450 Probe Substrates in Ferret Hepatocytes Biomimetic Nanoscale Systems for Targeted Delivery in Cancer: Current Advances and Future Prospects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1