基于羧酸酯酶 1 的雷马唑仑药物相互作用潜力:体外研究和文献综述。

IF 2.1 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Current drug metabolism Pub Date : 2024-01-01 DOI:10.2174/0113892002308233240801104910
Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stohr
{"title":"基于羧酸酯酶 1 的雷马唑仑药物相互作用潜力:体外研究和文献综述。","authors":"Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stohr","doi":"10.2174/0113892002308233240801104910","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).</p><p><strong>Objective: </strong>Remimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.</p><p><strong>Methods: </strong>Possible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs. Further, substrates and inhibitors of CES1, identified in the literature, were evaluated for possible <i>in-vivo</i> inhibition using pharmacokinetic and Ki or IC<sub>50</sub> values. Compounds with only one published inhibitory concentration and CES1 substrates lacking inhibition data were assigned conservative Ki values.</p><p><strong>Results: </strong>In human liver homogenates and/or blood cells, remimazolam showed no significant inhibition of esmolol and landiolol metabolism, which, in turn, at up to 98 and 169 μM, respectively, did not inhibit remimazolam hydrolysis by human liver homogenates. In human liver S9 fractions, IC<sub>50</sub> values ranged from 0.69 μM (simvastatin) and 57 μM (diltiazem) to > 100 μM (atorvastatin) and, for the remaining test items (bupropion, carvedilol, nelfinavir, nitrendipine, and telmisartan), they ranged from 126 to 658 μM. Remifentanil was ineffective even at 1250 μM. Guidance-conforming evaluation revealed no relevant drug-drug interactions with remimazolam <i>via</i> CES1. The algorithm-based predictions were consistent with human study data. Among CES1 inhibitors and substrates identified in the literature, only dapsone and rufinamide were found to be possible <i>in-vivo</i> inhibitors of remimazolam metabolism.</p><p><strong>Conclusion: </strong>Data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CES1. The theoretical approach and compiled data are not specific to remimazolam and, hence, applicable in the evaluation of other CES1 substrates.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":"431-445"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carboxylesterase 1-Based Drug-Drug Interaction Potential of Remimazolam: <i>In-Vitro</i> Studies and Literature Review.\",\"authors\":\"Karl-Uwe Petersen, Wolfgang Schmalix, Marija Pesic, Thomas Stohr\",\"doi\":\"10.2174/0113892002308233240801104910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).</p><p><strong>Objective: </strong>Remimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.</p><p><strong>Methods: </strong>Possible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs. Further, substrates and inhibitors of CES1, identified in the literature, were evaluated for possible <i>in-vivo</i> inhibition using pharmacokinetic and Ki or IC<sub>50</sub> values. Compounds with only one published inhibitory concentration and CES1 substrates lacking inhibition data were assigned conservative Ki values.</p><p><strong>Results: </strong>In human liver homogenates and/or blood cells, remimazolam showed no significant inhibition of esmolol and landiolol metabolism, which, in turn, at up to 98 and 169 μM, respectively, did not inhibit remimazolam hydrolysis by human liver homogenates. In human liver S9 fractions, IC<sub>50</sub> values ranged from 0.69 μM (simvastatin) and 57 μM (diltiazem) to > 100 μM (atorvastatin) and, for the remaining test items (bupropion, carvedilol, nelfinavir, nitrendipine, and telmisartan), they ranged from 126 to 658 μM. Remifentanil was ineffective even at 1250 μM. Guidance-conforming evaluation revealed no relevant drug-drug interactions with remimazolam <i>via</i> CES1. The algorithm-based predictions were consistent with human study data. Among CES1 inhibitors and substrates identified in the literature, only dapsone and rufinamide were found to be possible <i>in-vivo</i> inhibitors of remimazolam metabolism.</p><p><strong>Conclusion: </strong>Data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CES1. The theoretical approach and compiled data are not specific to remimazolam and, hence, applicable in the evaluation of other CES1 substrates.</p>\",\"PeriodicalId\":10770,\"journal\":{\"name\":\"Current drug metabolism\",\"volume\":\" \",\"pages\":\"431-445\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892002308233240801104910\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002308233240801104910","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:被批准用于手术镇静和全身麻醉的超短效苯二氮卓类药物雷马唑仑会被羧酸酯酶1(CES1)灭活:目的:研究雷马唑仑在 CES1 介导的药物间相互作用(DDI)中的参与情况:方法:在与 11 种不同药物的共同暴露实验中研究了雷马唑仑可能产生的相互作用。此外,还利用药代动力学和 Ki 或 IC50 值评估了文献中确定的 CES1 底物和抑制剂在体内可能产生的抑制作用。对于只有一种已发表的抑制浓度的化合物和缺乏抑制数据的 CES1 底物,则采用保守的 Ki 值:在人肝匀浆和/或血细胞中,雷马唑仑对艾司洛尔和兰地洛尔的代谢无明显抑制作用,而艾司洛尔和兰地洛尔在人肝匀浆中的水解抑制浓度分别高达 98 μM 和 169 μM。在人体肝脏 S9 馏分中,IC50 值从 0.69 μM(辛伐他汀)和 57 μM(地尔硫卓)到大于 100 μM(阿托伐他汀)不等,其余测试项目(布丙酚、卡维地洛、奈非那韦、硝苯地平和替米沙坦)的 IC50 值从 126 μM 到 658 μM不等。Remifentanil 在 1250 μM 时也无效。符合指导原则的评估显示,通过 CES1 与雷米马唑仑没有相关的药物相互作用。基于算法的预测结果与人体研究数据一致。在文献中发现的CES1抑制剂和底物中,只有达哌酮和鲁非那胺可能是瑞马唑仑体内代谢的抑制剂:数据和分析表明,由 CES1 介导的雷马唑仑药代动力学 DDIs 可能性很低。理论方法和汇编的数据并非仅针对雷马唑仑,因此也适用于对其他 CES1 底物的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carboxylesterase 1-Based Drug-Drug Interaction Potential of Remimazolam: In-Vitro Studies and Literature Review.

Background: The ultra-short-acting benzodiazepine remimazolam, approved for procedural sedation and general anesthesia, is inactivated by carboxylesterase 1 (CES1).

Objective: Remimazolam´s involvement in CES1-mediated drug-drug interactions (DDIs) was investigated.

Methods: Possible interactions of remimazolam were studied in co-exposure experiments with eleven different drugs. Further, substrates and inhibitors of CES1, identified in the literature, were evaluated for possible in-vivo inhibition using pharmacokinetic and Ki or IC50 values. Compounds with only one published inhibitory concentration and CES1 substrates lacking inhibition data were assigned conservative Ki values.

Results: In human liver homogenates and/or blood cells, remimazolam showed no significant inhibition of esmolol and landiolol metabolism, which, in turn, at up to 98 and 169 μM, respectively, did not inhibit remimazolam hydrolysis by human liver homogenates. In human liver S9 fractions, IC50 values ranged from 0.69 μM (simvastatin) and 57 μM (diltiazem) to > 100 μM (atorvastatin) and, for the remaining test items (bupropion, carvedilol, nelfinavir, nitrendipine, and telmisartan), they ranged from 126 to 658 μM. Remifentanil was ineffective even at 1250 μM. Guidance-conforming evaluation revealed no relevant drug-drug interactions with remimazolam via CES1. The algorithm-based predictions were consistent with human study data. Among CES1 inhibitors and substrates identified in the literature, only dapsone and rufinamide were found to be possible in-vivo inhibitors of remimazolam metabolism.

Conclusion: Data and analyses suggest a very low potential of remimazolam for pharmacokinetic DDIs mediated by CES1. The theoretical approach and compiled data are not specific to remimazolam and, hence, applicable in the evaluation of other CES1 substrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current drug metabolism
Current drug metabolism 医学-生化与分子生物学
CiteScore
4.30
自引率
4.30%
发文量
81
审稿时长
4-8 weeks
期刊介绍: Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism. More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.
期刊最新文献
Application of UPLC-MS/MS to Study Cellular Pharmacokinetics of Seven Active Components of Cnidii Fructus Extracts. Drug Metabolizing Enzymes: An Exclusive Guide into Latest Research in Pharmaco-genetic Dynamics in Arab Countries. Unveiling the Interplay: Antioxidant Enzyme Polymorphisms and Oxidative Stress in Preterm Neonatal Renal and Hepatic Functions. Quality by Design Approach for the Development of Cariprazine Hydrochloride Loaded Lipid-Based Formulation for Brain Delivery via Intranasal Route. Ceftobiprole and Cefiderocol for Patients on Extracorporeal Membrane Oxygenation: The Role of Therapeutic Drug Monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1