{"title":"药理诱导肿瘤细胞中 MHC-I 的表达可重振 T 细胞的抗肿瘤免疫力。","authors":"Qian Yu, Yu Dong, Xiaobo Wang, Chenxuan Su, Runkai Zhang, Wei Xu, Shuai Jiang, Yongjun Dang, Wei Jiang","doi":"10.1172/jci.insight.177788","DOIUrl":null,"url":null,"abstract":"<p><p>Antigen presentation by major histocompatibility complex class I (MHC-I) is crucial for T cell-mediated killing, and aberrant surface MHC-I expression is tightly associated with immune evasion. To address MHC-I downregulation, we conducted a high-throughput flow cytometry screen, identifying bleomycin (BLM) as a potent inducer of cell surface MHC-I expression. BLM-induced MHC-I augmentation rendered tumor cells more susceptible to T cells in coculture assays and enhanced antitumor responses in an adoptive cellular transfer mouse model. Mechanistically, BLM remodeled the tumor immune microenvironment, inducing MHC-I expression in a manner dependent on ataxia-telangiectasia mutated/ataxia telangiectasia and Rad3-related-NF-κB. Furthermore, BLM improved T cell-dependent immunotherapeutic approaches, including bispecific antibody therapy, immune checkpoint therapy, and autologous tumor-infiltrating lymphocyte therapy. Importantly, low-dose BLM treatment in mouse models amplified the antitumor effect of immunotherapy without detectable pulmonary toxicity. In summary, our findings repurpose BLM as a potential inducer of MHC-I, enhancing its expression to improve the efficacy of T cell-based immunotherapy.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385079/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pharmacological induction of MHC-I expression in tumor cells revitalizes T cell antitumor immunity.\",\"authors\":\"Qian Yu, Yu Dong, Xiaobo Wang, Chenxuan Su, Runkai Zhang, Wei Xu, Shuai Jiang, Yongjun Dang, Wei Jiang\",\"doi\":\"10.1172/jci.insight.177788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antigen presentation by major histocompatibility complex class I (MHC-I) is crucial for T cell-mediated killing, and aberrant surface MHC-I expression is tightly associated with immune evasion. To address MHC-I downregulation, we conducted a high-throughput flow cytometry screen, identifying bleomycin (BLM) as a potent inducer of cell surface MHC-I expression. BLM-induced MHC-I augmentation rendered tumor cells more susceptible to T cells in coculture assays and enhanced antitumor responses in an adoptive cellular transfer mouse model. Mechanistically, BLM remodeled the tumor immune microenvironment, inducing MHC-I expression in a manner dependent on ataxia-telangiectasia mutated/ataxia telangiectasia and Rad3-related-NF-κB. Furthermore, BLM improved T cell-dependent immunotherapeutic approaches, including bispecific antibody therapy, immune checkpoint therapy, and autologous tumor-infiltrating lymphocyte therapy. Importantly, low-dose BLM treatment in mouse models amplified the antitumor effect of immunotherapy without detectable pulmonary toxicity. In summary, our findings repurpose BLM as a potential inducer of MHC-I, enhancing its expression to improve the efficacy of T cell-based immunotherapy.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385079/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.177788\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.177788","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
主要组织相容性复合物 I 类(MHC-I)的抗原呈递对 T 细胞介导的杀伤至关重要,而 MHC-I 的异常表面表达与免疫逃避密切相关。为了解决 MHC-I 下调问题,我们进行了高通量流式细胞术筛选,确定博莱霉素(BLM)是细胞表面 MHC-I 表达的强效诱导剂。BLM诱导的MHC-I增强使肿瘤细胞在共培养试验中更易受T细胞的影响,并增强了小鼠采用性细胞转移模型中的抗肿瘤反应。从机理上讲,BLM 能重塑肿瘤免疫微环境,以 ATM/ATR-NF-κB 依赖性方式诱导 MHC-I 表达。此外,BLM 还能改善依赖 T 细胞的免疫治疗方法,包括双特异性抗体疗法、免疫检查点疗法(ICT)和自体肿瘤浸润淋巴细胞(TILs)疗法。重要的是,小鼠模型中的低剂量BLM治疗可增强免疫疗法的抗肿瘤效果,且不会产生可检测到的肺毒性。总之,我们的研究结果重新利用了BLM作为MHC-I的潜在诱导剂,增强了MHC-I的表达,从而提高了基于T细胞的免疫疗法的疗效。
Pharmacological induction of MHC-I expression in tumor cells revitalizes T cell antitumor immunity.
Antigen presentation by major histocompatibility complex class I (MHC-I) is crucial for T cell-mediated killing, and aberrant surface MHC-I expression is tightly associated with immune evasion. To address MHC-I downregulation, we conducted a high-throughput flow cytometry screen, identifying bleomycin (BLM) as a potent inducer of cell surface MHC-I expression. BLM-induced MHC-I augmentation rendered tumor cells more susceptible to T cells in coculture assays and enhanced antitumor responses in an adoptive cellular transfer mouse model. Mechanistically, BLM remodeled the tumor immune microenvironment, inducing MHC-I expression in a manner dependent on ataxia-telangiectasia mutated/ataxia telangiectasia and Rad3-related-NF-κB. Furthermore, BLM improved T cell-dependent immunotherapeutic approaches, including bispecific antibody therapy, immune checkpoint therapy, and autologous tumor-infiltrating lymphocyte therapy. Importantly, low-dose BLM treatment in mouse models amplified the antitumor effect of immunotherapy without detectable pulmonary toxicity. In summary, our findings repurpose BLM as a potential inducer of MHC-I, enhancing its expression to improve the efficacy of T cell-based immunotherapy.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.