根据成分准确预测空间群。

IF 6.1 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Applied Crystallography Pub Date : 2024-06-18 eCollection Date: 2024-08-01 DOI:10.1107/S1600576724004497
Vishwesh Venkatraman, Patricia Almeida Carvalho
{"title":"根据成分准确预测空间群。","authors":"Vishwesh Venkatraman, Patricia Almeida Carvalho","doi":"10.1107/S1600576724004497","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting crystal symmetry simply from chemical composition has remained challenging. Several machine-learning approaches can be employed, but the predictive value of popular crystallographic databases is relatively modest due to the paucity of data and uneven distribution across the 230 space groups. In this work, virtually all crystallographic information available to science has been compiled and used to train and test multiple machine-learning models. Composition-driven random-forest classification relying on a large set of descriptors showed the best performance. The predictive models for crystal system, Bravais lattice, point group and space group of inorganic compounds are made publicly available as easy-to-use software downloadable from https://gitlab.com/vishsoft/cosy.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"57 Pt 4","pages":"975-985"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299606/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accurate space-group prediction from composition.\",\"authors\":\"Vishwesh Venkatraman, Patricia Almeida Carvalho\",\"doi\":\"10.1107/S1600576724004497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting crystal symmetry simply from chemical composition has remained challenging. Several machine-learning approaches can be employed, but the predictive value of popular crystallographic databases is relatively modest due to the paucity of data and uneven distribution across the 230 space groups. In this work, virtually all crystallographic information available to science has been compiled and used to train and test multiple machine-learning models. Composition-driven random-forest classification relying on a large set of descriptors showed the best performance. The predictive models for crystal system, Bravais lattice, point group and space group of inorganic compounds are made publicly available as easy-to-use software downloadable from https://gitlab.com/vishsoft/cosy.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"57 Pt 4\",\"pages\":\"975-985\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299606/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600576724004497\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724004497","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

仅从化学成分预测晶体对称性仍然具有挑战性。我们可以采用多种机器学习方法,但由于数据匮乏以及在 230 个空间群中分布不均,流行的晶体学数据库的预测价值相对较低。在这项工作中,对科学界可获得的几乎所有晶体学信息进行了汇编,并用于训练和测试多个机器学习模型。依赖于大量描述符集的成分驱动随机森林分类显示出最佳性能。无机化合物的晶系、布拉维晶格、点群和空间群预测模型已作为易于使用的软件公开发布,可从 https://gitlab.com/vishsoft/cosy 下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate space-group prediction from composition.

Predicting crystal symmetry simply from chemical composition has remained challenging. Several machine-learning approaches can be employed, but the predictive value of popular crystallographic databases is relatively modest due to the paucity of data and uneven distribution across the 230 space groups. In this work, virtually all crystallographic information available to science has been compiled and used to train and test multiple machine-learning models. Composition-driven random-forest classification relying on a large set of descriptors showed the best performance. The predictive models for crystal system, Bravais lattice, point group and space group of inorganic compounds are made publicly available as easy-to-use software downloadable from https://gitlab.com/vishsoft/cosy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
期刊最新文献
SUBGROUPS: a computer tool at the Bilbao Crystallographic Server for the study of pseudo-symmetric or distorted structures. Characterization of sub-micrometre-sized voids in fixed human brain tissue using scanning X-ray microdiffraction. Electronic angle focusing for neutron time-of-flight powder diffractometers. Link between b.c.c.-f.c.c. orientation relationship and austenite morphology in CF8M stainless steel. In situ counter-diffusion crystallization and long-term crystal preservation in microfluidic fixed targets for serial crystallography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1