利用机器学习从原位 X 射线衍射数据中快速检测罕见事件。

IF 6.1 3区 材料科学 Q1 Biochemistry, Genetics and Molecular Biology Journal of Applied Crystallography Pub Date : 2024-07-17 eCollection Date: 2024-08-01 DOI:10.1107/S160057672400517X
Weijian Zheng, Jun-Sang Park, Peter Kenesei, Ahsan Ali, Zhengchun Liu, Ian Foster, Nicholas Schwarz, Rajkumar Kettimuthu, Antonino Miceli, Hemant Sharma
{"title":"利用机器学习从原位 X 射线衍射数据中快速检测罕见事件。","authors":"Weijian Zheng, Jun-Sang Park, Peter Kenesei, Ahsan Ali, Zhengchun Liu, Ian Foster, Nicholas Schwarz, Rajkumar Kettimuthu, Antonino Miceli, Hemant Sharma","doi":"10.1107/S160057672400517X","DOIUrl":null,"url":null,"abstract":"<p><p>High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials in their bulk form. These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots of the evolving microstructure and attributes over time. However, the extreme data volumes and the high costs of traditional data acquisition and reduction approaches pose a barrier to quickly extracting actionable insights and improving the temporal resolution of these snapshots. This article presents a fully automated technique capable of rapidly detecting the onset of plasticity in high-energy X-ray microscopy data. The technique is computationally faster by at least 50 times than the traditional approaches and works for data sets that are up to nine times sparser than a full data set. This new technique leverages self-supervised image representation learning and clustering to transform massive data sets into compact, semantic-rich representations of visually salient characteristics (<i>e.g.</i> peak shapes). These characteristics can rapidly indicate anomalous events, such as changes in diffraction peak shapes. It is anticipated that this technique will provide just-in-time actionable information to drive smarter experiments that effectively deploy multi-modal X-ray diffraction methods spanning many decades of length scales.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"57 Pt 4","pages":"1158-1170"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299612/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid detection of rare events from <i>in situ</i>X-ray diffraction data using machine learning.\",\"authors\":\"Weijian Zheng, Jun-Sang Park, Peter Kenesei, Ahsan Ali, Zhengchun Liu, Ian Foster, Nicholas Schwarz, Rajkumar Kettimuthu, Antonino Miceli, Hemant Sharma\",\"doi\":\"10.1107/S160057672400517X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials in their bulk form. These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots of the evolving microstructure and attributes over time. However, the extreme data volumes and the high costs of traditional data acquisition and reduction approaches pose a barrier to quickly extracting actionable insights and improving the temporal resolution of these snapshots. This article presents a fully automated technique capable of rapidly detecting the onset of plasticity in high-energy X-ray microscopy data. The technique is computationally faster by at least 50 times than the traditional approaches and works for data sets that are up to nine times sparser than a full data set. This new technique leverages self-supervised image representation learning and clustering to transform massive data sets into compact, semantic-rich representations of visually salient characteristics (<i>e.g.</i> peak shapes). These characteristics can rapidly indicate anomalous events, such as changes in diffraction peak shapes. It is anticipated that this technique will provide just-in-time actionable information to drive smarter experiments that effectively deploy multi-modal X-ray diffraction methods spanning many decades of length scales.</p>\",\"PeriodicalId\":14950,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"57 Pt 4\",\"pages\":\"1158-1170\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299612/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S160057672400517X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S160057672400517X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

高能 X 射线衍射方法可以非破坏性地绘制金属多晶工程材料的三维微观结构和相关属性。这些方法通常与热机械加载等外部刺激相结合,以拍摄随时间演变的微观结构和属性的快照。然而,传统的数据采集和还原方法数据量巨大、成本高昂,阻碍了快速提取可行见解和提高这些快照的时间分辨率。本文介绍了一种能够在高能 X 射线显微镜数据中快速检测可塑性开始的全自动技术。该技术的计算速度比传统方法至少快 50 倍,而且适用于比完整数据集稀疏 9 倍的数据集。这项新技术利用自监督图像表征学习和聚类,将海量数据集转化为紧凑、语义丰富的视觉显著特征(如峰值形状)表征。这些特征可迅速显示异常事件,如衍射峰形状的变化。预计这项技术将提供及时可操作的信息,以推动更智能的实验,有效部署跨越数十年长度尺度的多模态 X 射线衍射方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid detection of rare events from in situX-ray diffraction data using machine learning.

High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials in their bulk form. These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots of the evolving microstructure and attributes over time. However, the extreme data volumes and the high costs of traditional data acquisition and reduction approaches pose a barrier to quickly extracting actionable insights and improving the temporal resolution of these snapshots. This article presents a fully automated technique capable of rapidly detecting the onset of plasticity in high-energy X-ray microscopy data. The technique is computationally faster by at least 50 times than the traditional approaches and works for data sets that are up to nine times sparser than a full data set. This new technique leverages self-supervised image representation learning and clustering to transform massive data sets into compact, semantic-rich representations of visually salient characteristics (e.g. peak shapes). These characteristics can rapidly indicate anomalous events, such as changes in diffraction peak shapes. It is anticipated that this technique will provide just-in-time actionable information to drive smarter experiments that effectively deploy multi-modal X-ray diffraction methods spanning many decades of length scales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.30%
发文量
178
审稿时长
4.7 months
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
期刊最新文献
SUBGROUPS: a computer tool at the Bilbao Crystallographic Server for the study of pseudo-symmetric or distorted structures. Characterization of sub-micrometre-sized voids in fixed human brain tissue using scanning X-ray microdiffraction. Electronic angle focusing for neutron time-of-flight powder diffractometers. Link between b.c.c.-f.c.c. orientation relationship and austenite morphology in CF8M stainless steel. In situ counter-diffusion crystallization and long-term crystal preservation in microfluidic fixed targets for serial crystallography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1