David Salom, Arum Wu, Chang C Liu, Krzysztof Palczewski
{"title":"纳米抗体对 GPCR 结构生物学的影响及其作为治疗剂的潜力。","authors":"David Salom, Arum Wu, Chang C Liu, Krzysztof Palczewski","doi":"10.1124/molpharm.124.000974","DOIUrl":null,"url":null,"abstract":"<p><p>The family of human G protein-coupled receptors (GPCRs) comprises about 800 different members, with about 35% of current pharmaceutical drugs targeting GPCRs. However, GPCR structural biology, necessary for structure-guided drug design, has lagged behind that of other membrane proteins, and it was not until the year 2000 when the first crystal structure of a GPCR (rhodopsin) was solved. Starting in 2007, the determination of additional GPCR structures was facilitated by protein engineering, new crystallization techniques, complexation with antibody fragments, and other strategies. More recently, the use of camelid heavy-chain-only antibody fragments (nanobodies) as crystallographic chaperones has revolutionized the field of GPCR structural biology, aiding in the determination of more than 340 GPCR structures to date. In most cases, the GPCR structures solved as complexes with nanobodies (Nbs) have revealed the binding mode of cognate or non-natural ligands; in a few cases, the same Nb has acted as an orthosteric or allosteric modulator of GPCR signaling. In this review, we summarize the multiple ingenious strategies that have been conceived and implemented in the last decade to capitalize on the discovery of nanobodies to study GPCRs from a structural perspective. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) are major pharmacological targets, and the determination of their structures at high resolution has been essential for structure-guided drug design and for insights about their functions. Single-domain antibodies (nanobodies) have greatly facilitated the structural determination of GPCRs by forming complexes directly with the receptors or indirectly through protein partners.</p>","PeriodicalId":18767,"journal":{"name":"Molecular Pharmacology","volume":" ","pages":"155-163"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413913/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Impact of Nanobodies on G Protein-Coupled Receptor Structural Biology and Their Potential as Therapeutic Agents.\",\"authors\":\"David Salom, Arum Wu, Chang C Liu, Krzysztof Palczewski\",\"doi\":\"10.1124/molpharm.124.000974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The family of human G protein-coupled receptors (GPCRs) comprises about 800 different members, with about 35% of current pharmaceutical drugs targeting GPCRs. However, GPCR structural biology, necessary for structure-guided drug design, has lagged behind that of other membrane proteins, and it was not until the year 2000 when the first crystal structure of a GPCR (rhodopsin) was solved. Starting in 2007, the determination of additional GPCR structures was facilitated by protein engineering, new crystallization techniques, complexation with antibody fragments, and other strategies. More recently, the use of camelid heavy-chain-only antibody fragments (nanobodies) as crystallographic chaperones has revolutionized the field of GPCR structural biology, aiding in the determination of more than 340 GPCR structures to date. In most cases, the GPCR structures solved as complexes with nanobodies (Nbs) have revealed the binding mode of cognate or non-natural ligands; in a few cases, the same Nb has acted as an orthosteric or allosteric modulator of GPCR signaling. In this review, we summarize the multiple ingenious strategies that have been conceived and implemented in the last decade to capitalize on the discovery of nanobodies to study GPCRs from a structural perspective. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) are major pharmacological targets, and the determination of their structures at high resolution has been essential for structure-guided drug design and for insights about their functions. Single-domain antibodies (nanobodies) have greatly facilitated the structural determination of GPCRs by forming complexes directly with the receptors or indirectly through protein partners.</p>\",\"PeriodicalId\":18767,\"journal\":{\"name\":\"Molecular Pharmacology\",\"volume\":\" \",\"pages\":\"155-163\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413913/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/molpharm.124.000974\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/molpharm.124.000974","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The Impact of Nanobodies on G Protein-Coupled Receptor Structural Biology and Their Potential as Therapeutic Agents.
The family of human G protein-coupled receptors (GPCRs) comprises about 800 different members, with about 35% of current pharmaceutical drugs targeting GPCRs. However, GPCR structural biology, necessary for structure-guided drug design, has lagged behind that of other membrane proteins, and it was not until the year 2000 when the first crystal structure of a GPCR (rhodopsin) was solved. Starting in 2007, the determination of additional GPCR structures was facilitated by protein engineering, new crystallization techniques, complexation with antibody fragments, and other strategies. More recently, the use of camelid heavy-chain-only antibody fragments (nanobodies) as crystallographic chaperones has revolutionized the field of GPCR structural biology, aiding in the determination of more than 340 GPCR structures to date. In most cases, the GPCR structures solved as complexes with nanobodies (Nbs) have revealed the binding mode of cognate or non-natural ligands; in a few cases, the same Nb has acted as an orthosteric or allosteric modulator of GPCR signaling. In this review, we summarize the multiple ingenious strategies that have been conceived and implemented in the last decade to capitalize on the discovery of nanobodies to study GPCRs from a structural perspective. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) are major pharmacological targets, and the determination of their structures at high resolution has been essential for structure-guided drug design and for insights about their functions. Single-domain antibodies (nanobodies) have greatly facilitated the structural determination of GPCRs by forming complexes directly with the receptors or indirectly through protein partners.
期刊介绍:
Molecular Pharmacology publishes findings derived from the application of innovative structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology to basic pharmacological problems that provide mechanistic insights that are broadly important for the fields of pharmacology and toxicology. Relevant topics include:
Molecular Signaling / Mechanism of Drug Action
Chemical Biology / Drug Discovery
Structure of Drug-Receptor Complex
Systems Analysis of Drug Action
Drug Transport / Metabolism