{"title":"雌性生殖投资选择对雄性生育能力特征的影响","authors":"Chloe Mason, Barbara Tschirren, Nicola Hemmings","doi":"10.1093/jeb/voae095","DOIUrl":null,"url":null,"abstract":"<p><p>Despite sharing an autosomal genome, the often divergent reproductive strategies of males and females cause the selection to act in a sex-specific manner. Selection acting on one sex can have negative, positive, or neutral fitness consequences on the opposite sex. Here, we test how female-limited selection on reproductive investment in Japanese quail (Coturnix japonica) affects male fertility-related traits. Despite there being no difference in the size of males' testes from lines selected for high female reproductive investment (H-line) or low female reproductive investment (L-line), in both lines, the left testis had a greater volume of sperm-producing tissue. Since H-line females have a larger left-side restricted oviduct, this suggests a positive genetic correlation between male and female gonad function and that internal testis structure is a target of sexual selection. However, despite H-line males having previously been found to have greater fertilization success in a competitive scenario, we found little evidence of a difference between the lines in sperm number, motility, velocity, length, or the number of sperm that reached the ova. Precopulatory cues and/or the role of seminal fluid in sperm motility may thus be more likely to contribute to the H-line male fertilization advantage in this species.</p>","PeriodicalId":50198,"journal":{"name":"Journal of Evolutionary Biology","volume":" ","pages":"1113-1124"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of female-specific selection for reproductive investment on male fertility traits.\",\"authors\":\"Chloe Mason, Barbara Tschirren, Nicola Hemmings\",\"doi\":\"10.1093/jeb/voae095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite sharing an autosomal genome, the often divergent reproductive strategies of males and females cause the selection to act in a sex-specific manner. Selection acting on one sex can have negative, positive, or neutral fitness consequences on the opposite sex. Here, we test how female-limited selection on reproductive investment in Japanese quail (Coturnix japonica) affects male fertility-related traits. Despite there being no difference in the size of males' testes from lines selected for high female reproductive investment (H-line) or low female reproductive investment (L-line), in both lines, the left testis had a greater volume of sperm-producing tissue. Since H-line females have a larger left-side restricted oviduct, this suggests a positive genetic correlation between male and female gonad function and that internal testis structure is a target of sexual selection. However, despite H-line males having previously been found to have greater fertilization success in a competitive scenario, we found little evidence of a difference between the lines in sperm number, motility, velocity, length, or the number of sperm that reached the ova. Precopulatory cues and/or the role of seminal fluid in sperm motility may thus be more likely to contribute to the H-line male fertilization advantage in this species.</p>\",\"PeriodicalId\":50198,\"journal\":{\"name\":\"Journal of Evolutionary Biology\",\"volume\":\" \",\"pages\":\"1113-1124\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolutionary Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jeb/voae095\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jeb/voae095","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Effects of female-specific selection for reproductive investment on male fertility traits.
Despite sharing an autosomal genome, the often divergent reproductive strategies of males and females cause the selection to act in a sex-specific manner. Selection acting on one sex can have negative, positive, or neutral fitness consequences on the opposite sex. Here, we test how female-limited selection on reproductive investment in Japanese quail (Coturnix japonica) affects male fertility-related traits. Despite there being no difference in the size of males' testes from lines selected for high female reproductive investment (H-line) or low female reproductive investment (L-line), in both lines, the left testis had a greater volume of sperm-producing tissue. Since H-line females have a larger left-side restricted oviduct, this suggests a positive genetic correlation between male and female gonad function and that internal testis structure is a target of sexual selection. However, despite H-line males having previously been found to have greater fertilization success in a competitive scenario, we found little evidence of a difference between the lines in sperm number, motility, velocity, length, or the number of sperm that reached the ova. Precopulatory cues and/or the role of seminal fluid in sperm motility may thus be more likely to contribute to the H-line male fertilization advantage in this species.
期刊介绍:
It covers both micro- and macro-evolution of all types of organisms. The aim of the Journal is to integrate perspectives across molecular and microbial evolution, behaviour, genetics, ecology, life histories, development, palaeontology, systematics and morphology.