浮游植物细胞状态:多参数荧光寿命流式监测揭示细胞异质性。

Paul David Harris, Nadav Ben Eliezer, Nir Keren, Eitan Lerner
{"title":"浮游植物细胞状态:多参数荧光寿命流式监测揭示细胞异质性。","authors":"Paul David Harris,&nbsp;Nadav Ben Eliezer,&nbsp;Nir Keren,&nbsp;Eitan Lerner","doi":"10.1111/febs.17237","DOIUrl":null,"url":null,"abstract":"<p>Phytoplankton are a major source of primary productivity. Their photosynthetic fluorescence are unique measures of their type, physiological state, and response to environmental conditions. Changes in phytoplankton photophysiology are commonly monitored by bulk fluorescence spectroscopy, where gradual changes are reported in response to different perturbations, such as light intensity changes. What is the meaning of such trends in bulk parameters if their values report ensemble averages of multiple unsynchronized cells? To answer this, we developed an experimental scheme that enables tracking fluorescence intensities, brightnesses, and their ratios, as well as mean photon nanotimes equivalent to mean fluorescence lifetimes, one cell at a time. We monitored three different phytoplankton species during diurnal cycles and in response to an abrupt increase in light intensity. Our results show that we can define specific subpopulations of cells by their fluorescence parameters for each of the phytoplankton species, and in response to varying light conditions. Importantly, we identify the cells undergo well-defined transitions between these subpopulations. The approach shown in this work will be useful in the exact characterization of phytoplankton cell states and parameter signatures in response to different changes these cells experience in marine environments, which will be applicable for monitoring marine-related environmental effects.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17237","citationCount":"0","resultStr":"{\"title\":\"Phytoplankton cell-states: multiparameter fluorescence lifetime flow-based monitoring reveals cellular heterogeneity\",\"authors\":\"Paul David Harris,&nbsp;Nadav Ben Eliezer,&nbsp;Nir Keren,&nbsp;Eitan Lerner\",\"doi\":\"10.1111/febs.17237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phytoplankton are a major source of primary productivity. Their photosynthetic fluorescence are unique measures of their type, physiological state, and response to environmental conditions. Changes in phytoplankton photophysiology are commonly monitored by bulk fluorescence spectroscopy, where gradual changes are reported in response to different perturbations, such as light intensity changes. What is the meaning of such trends in bulk parameters if their values report ensemble averages of multiple unsynchronized cells? To answer this, we developed an experimental scheme that enables tracking fluorescence intensities, brightnesses, and their ratios, as well as mean photon nanotimes equivalent to mean fluorescence lifetimes, one cell at a time. We monitored three different phytoplankton species during diurnal cycles and in response to an abrupt increase in light intensity. Our results show that we can define specific subpopulations of cells by their fluorescence parameters for each of the phytoplankton species, and in response to varying light conditions. Importantly, we identify the cells undergo well-defined transitions between these subpopulations. The approach shown in this work will be useful in the exact characterization of phytoplankton cell states and parameter signatures in response to different changes these cells experience in marine environments, which will be applicable for monitoring marine-related environmental effects.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/febs.17237\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/febs.17237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/febs.17237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

浮游植物是初级生产力的主要来源。它们的光合荧光是衡量其类型、生理状态和对环境条件反应的独特指标。浮游植物光生理学的变化通常是通过大量荧光光谱来监测的,在不同的扰动(如光照强度变化)下,荧光光谱会报告出逐渐的变化。如果大体参数值报告的是多个非同步细胞的集合平均值,那么这种趋势有何意义?为了回答这个问题,我们开发了一种实验方案,可以跟踪荧光强度、亮度及其比率,以及相当于平均荧光寿命的平均光子纳秒。我们监测了三种不同浮游植物的昼夜周期以及对光照强度突然增加的反应。结果表明,我们可以根据每个浮游植物物种的荧光参数以及对不同光照条件的反应来确定特定的细胞亚群。重要的是,我们确定了细胞在这些亚群之间的明确过渡。这项工作中展示的方法将有助于准确描述浮游植物细胞状态和参数特征,以应对这些细胞在海洋环境中经历的不同变化,这将适用于监测与海洋有关的环境影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phytoplankton cell-states: multiparameter fluorescence lifetime flow-based monitoring reveals cellular heterogeneity

Phytoplankton are a major source of primary productivity. Their photosynthetic fluorescence are unique measures of their type, physiological state, and response to environmental conditions. Changes in phytoplankton photophysiology are commonly monitored by bulk fluorescence spectroscopy, where gradual changes are reported in response to different perturbations, such as light intensity changes. What is the meaning of such trends in bulk parameters if their values report ensemble averages of multiple unsynchronized cells? To answer this, we developed an experimental scheme that enables tracking fluorescence intensities, brightnesses, and their ratios, as well as mean photon nanotimes equivalent to mean fluorescence lifetimes, one cell at a time. We monitored three different phytoplankton species during diurnal cycles and in response to an abrupt increase in light intensity. Our results show that we can define specific subpopulations of cells by their fluorescence parameters for each of the phytoplankton species, and in response to varying light conditions. Importantly, we identify the cells undergo well-defined transitions between these subpopulations. The approach shown in this work will be useful in the exact characterization of phytoplankton cell states and parameter signatures in response to different changes these cells experience in marine environments, which will be applicable for monitoring marine-related environmental effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Atg2 controls Drosophila hematopoiesis through the PVR/TOR signaling pathways. Obesity, white adipose tissue and cancer. Issue Information CREB3L1/OASIS: cell cycle regulator and tumor suppressor. Novel insights into the GCN2 pathway and its targeting. Therapeutic value in cancer and lessons from lung fibrosis development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1