{"title":"基于尺寸排阻的 LC-UV/HRMS 方法用于分析合成 GLP-1 类似物利拉鲁肽中的聚集体,并评估辅料对聚集体的影响。","authors":"Devendra Badgujar, Sanket Bawake, Ashwini Chawathe, Nitish Sharma","doi":"10.1002/bmc.5983","DOIUrl":null,"url":null,"abstract":"<p>Peptide aggregation is one of the key challenges associated with the development of therapeutic peptides. Peptide and protein aggregates are considered as one of the most important critical quality attributes (CQA). Therapeutic liraglutide (LGT) is proteinaceous in nature, and aggregation can be triggered by various environmental stress condition. Therefore, it is essential to separate and identify aggregation states of such drugs. In this study, we have established size exclusion chromatography-liquid chromatography-ultraviolet/high resolution mass spectrometry (SEC-LC-UV/HRMS) method to separate and identify the stress induced LGT aggregates. LGT samples were subjected to photolytic, thermal, freeze thaw and shaking stress conditions. Additionally, LGT solution was incubated with surfactant and excipient that are commonly used in peptide formulation, to evaluate their impact on aggregation level and physicochemical stability over time. The developed SEC method was also validated for specificity, accuracy, precision and linearity. The results of this study will be useful for investigators to monitor LGT aggregates during product development.</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"38 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size-exclusion LC-UV/HRMS based method for the analysis of aggregates in synthetic GLP-1 analog liraglutide and evaluation of excipient impact on aggregation\",\"authors\":\"Devendra Badgujar, Sanket Bawake, Ashwini Chawathe, Nitish Sharma\",\"doi\":\"10.1002/bmc.5983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Peptide aggregation is one of the key challenges associated with the development of therapeutic peptides. Peptide and protein aggregates are considered as one of the most important critical quality attributes (CQA). Therapeutic liraglutide (LGT) is proteinaceous in nature, and aggregation can be triggered by various environmental stress condition. Therefore, it is essential to separate and identify aggregation states of such drugs. In this study, we have established size exclusion chromatography-liquid chromatography-ultraviolet/high resolution mass spectrometry (SEC-LC-UV/HRMS) method to separate and identify the stress induced LGT aggregates. LGT samples were subjected to photolytic, thermal, freeze thaw and shaking stress conditions. Additionally, LGT solution was incubated with surfactant and excipient that are commonly used in peptide formulation, to evaluate their impact on aggregation level and physicochemical stability over time. The developed SEC method was also validated for specificity, accuracy, precision and linearity. The results of this study will be useful for investigators to monitor LGT aggregates during product development.</p>\",\"PeriodicalId\":8861,\"journal\":{\"name\":\"Biomedical Chromatography\",\"volume\":\"38 10\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Chromatography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmc.5983\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.5983","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Size-exclusion LC-UV/HRMS based method for the analysis of aggregates in synthetic GLP-1 analog liraglutide and evaluation of excipient impact on aggregation
Peptide aggregation is one of the key challenges associated with the development of therapeutic peptides. Peptide and protein aggregates are considered as one of the most important critical quality attributes (CQA). Therapeutic liraglutide (LGT) is proteinaceous in nature, and aggregation can be triggered by various environmental stress condition. Therefore, it is essential to separate and identify aggregation states of such drugs. In this study, we have established size exclusion chromatography-liquid chromatography-ultraviolet/high resolution mass spectrometry (SEC-LC-UV/HRMS) method to separate and identify the stress induced LGT aggregates. LGT samples were subjected to photolytic, thermal, freeze thaw and shaking stress conditions. Additionally, LGT solution was incubated with surfactant and excipient that are commonly used in peptide formulation, to evaluate their impact on aggregation level and physicochemical stability over time. The developed SEC method was also validated for specificity, accuracy, precision and linearity. The results of this study will be useful for investigators to monitor LGT aggregates during product development.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.