第八届生物创新大会 BioRED(生物医学关系提取数据集)赛道概览。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-08 DOI:10.1093/database/baae069
Rezarta Islamaj, Po-Ting Lai, Chih-Hsuan Wei, Ling Luo, Tiago Almeida, Richard A A Jonker, Sofia I R Conceição, Diana F Sousa, Cong-Phuoc Phan, Jung-Hsien Chiang, Jiru Li, Dinghao Pan, Wilailack Meesawad, Richard Tzong-Han Tsai, M Janina Sarol, Gibong Hong, Airat Valiev, Elena Tutubalina, Shao-Man Lee, Yi-Yu Hsu, Mingjie Li, Karin Verspoor, Zhiyong Lu
{"title":"第八届生物创新大会 BioRED(生物医学关系提取数据集)赛道概览。","authors":"Rezarta Islamaj, Po-Ting Lai, Chih-Hsuan Wei, Ling Luo, Tiago Almeida, Richard A A Jonker, Sofia I R Conceição, Diana F Sousa, Cong-Phuoc Phan, Jung-Hsien Chiang, Jiru Li, Dinghao Pan, Wilailack Meesawad, Richard Tzong-Han Tsai, M Janina Sarol, Gibong Hong, Airat Valiev, Elena Tutubalina, Shao-Man Lee, Yi-Yu Hsu, Mingjie Li, Karin Verspoor, Zhiyong Lu","doi":"10.1093/database/baae069","DOIUrl":null,"url":null,"abstract":"<p><p>The BioRED track at BioCreative VIII calls for a community effort to identify, semantically categorize, and highlight the novelty factor of the relationships between biomedical entities in unstructured text. Relation extraction is crucial for many biomedical natural language processing (NLP) applications, from drug discovery to custom medical solutions. The BioRED track simulates a real-world application of biomedical relationship extraction, and as such, considers multiple biomedical entity types, normalized to their specific corresponding database identifiers, as well as defines relationships between them in the documents. The challenge consisted of two subtasks: (i) in Subtask 1, participants were given the article text and human expert annotated entities, and were asked to extract the relation pairs, identify their semantic type and the novelty factor, and (ii) in Subtask 2, participants were given only the article text, and were asked to build an end-to-end system that could identify and categorize the relationships and their novelty. We received a total of 94 submissions from 14 teams worldwide. The highest F-score performances achieved for the Subtask 1 were: 77.17% for relation pair identification, 58.95% for relation type identification, 59.22% for novelty identification, and 44.55% when evaluating all of the above aspects of the comprehensive relation extraction. The highest F-score performances achieved for the Subtask 2 were: 55.84% for relation pair, 43.03% for relation type, 42.74% for novelty, and 32.75% for comprehensive relation extraction. The entire BioRED track dataset and other challenge materials are available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/ and https://codalab.lisn.upsaclay.fr/competitions/13377 and https://codalab.lisn.upsaclay.fr/competitions/13378. Database URL: https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/https://codalab.lisn.upsaclay.fr/competitions/13377https://codalab.lisn.upsaclay.fr/competitions/13378.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306928/pdf/","citationCount":"0","resultStr":"{\"title\":\"The overview of the BioRED (Biomedical Relation Extraction Dataset) track at BioCreative VIII.\",\"authors\":\"Rezarta Islamaj, Po-Ting Lai, Chih-Hsuan Wei, Ling Luo, Tiago Almeida, Richard A A Jonker, Sofia I R Conceição, Diana F Sousa, Cong-Phuoc Phan, Jung-Hsien Chiang, Jiru Li, Dinghao Pan, Wilailack Meesawad, Richard Tzong-Han Tsai, M Janina Sarol, Gibong Hong, Airat Valiev, Elena Tutubalina, Shao-Man Lee, Yi-Yu Hsu, Mingjie Li, Karin Verspoor, Zhiyong Lu\",\"doi\":\"10.1093/database/baae069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The BioRED track at BioCreative VIII calls for a community effort to identify, semantically categorize, and highlight the novelty factor of the relationships between biomedical entities in unstructured text. Relation extraction is crucial for many biomedical natural language processing (NLP) applications, from drug discovery to custom medical solutions. The BioRED track simulates a real-world application of biomedical relationship extraction, and as such, considers multiple biomedical entity types, normalized to their specific corresponding database identifiers, as well as defines relationships between them in the documents. The challenge consisted of two subtasks: (i) in Subtask 1, participants were given the article text and human expert annotated entities, and were asked to extract the relation pairs, identify their semantic type and the novelty factor, and (ii) in Subtask 2, participants were given only the article text, and were asked to build an end-to-end system that could identify and categorize the relationships and their novelty. We received a total of 94 submissions from 14 teams worldwide. The highest F-score performances achieved for the Subtask 1 were: 77.17% for relation pair identification, 58.95% for relation type identification, 59.22% for novelty identification, and 44.55% when evaluating all of the above aspects of the comprehensive relation extraction. The highest F-score performances achieved for the Subtask 2 were: 55.84% for relation pair, 43.03% for relation type, 42.74% for novelty, and 32.75% for comprehensive relation extraction. The entire BioRED track dataset and other challenge materials are available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/ and https://codalab.lisn.upsaclay.fr/competitions/13377 and https://codalab.lisn.upsaclay.fr/competitions/13378. Database URL: https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/https://codalab.lisn.upsaclay.fr/competitions/13377https://codalab.lisn.upsaclay.fr/competitions/13378.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306928/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/database/baae069\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae069","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

第八届生物创新大会(BioCreative VIII)的 "BioRED "分会场呼吁社会各界共同努力,对非结构化文本中的生物医学实体之间的关系进行识别、语义分类并突出其新颖性。关系提取对于从药物发现到定制医疗解决方案等许多生物医学自然语言处理(NLP)应用至关重要。BioRED 赛道模拟了生物医学关系提取的实际应用,因此考虑了多种生物医学实体类型,并将其归一化为特定的相应数据库标识符,还定义了它们在文档中的关系。挑战赛由两个子任务组成:(i) 子任务 1 给参赛者提供文章文本和人类专家注释的实体,要求他们提取关系对、识别其语义类型和新颖性因素;(ii) 子任务 2 只给参赛者提供文章文本,要求他们建立一个端到端系统,能够识别和分类关系及其新颖性。我们共收到来自全球 14 个团队的 94 份作品。子任务 1 的最高 F 分数为关系对识别率为 77.17%,关系类型识别率为 58.95%,新颖性识别率为 59.22%,在对综合关系提取的上述所有方面进行评估时,得分率为 44.55%。子任务 2 的最高 F 分数表现为:关系对识别为 55.84%,关系类型识别为 59.22%,新颖性识别为 44.55%:关系对为 55.84%,关系类型为 43.03%,新颖性为 42.74%,综合关系提取为 32.75%。整个 BioRED 赛道数据集和其他挑战材料可在 https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/、https://codalab.lisn.upsaclay.fr/competitions/13377 和 https://codalab.lisn.upsaclay.fr/competitions/13378 上查阅。数据库网址:https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/https://codalab.lisn.upsaclay.fr/competitions/13377https://codalab.lisn.upsaclay.fr/competitions/13378。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The overview of the BioRED (Biomedical Relation Extraction Dataset) track at BioCreative VIII.

The BioRED track at BioCreative VIII calls for a community effort to identify, semantically categorize, and highlight the novelty factor of the relationships between biomedical entities in unstructured text. Relation extraction is crucial for many biomedical natural language processing (NLP) applications, from drug discovery to custom medical solutions. The BioRED track simulates a real-world application of biomedical relationship extraction, and as such, considers multiple biomedical entity types, normalized to their specific corresponding database identifiers, as well as defines relationships between them in the documents. The challenge consisted of two subtasks: (i) in Subtask 1, participants were given the article text and human expert annotated entities, and were asked to extract the relation pairs, identify their semantic type and the novelty factor, and (ii) in Subtask 2, participants were given only the article text, and were asked to build an end-to-end system that could identify and categorize the relationships and their novelty. We received a total of 94 submissions from 14 teams worldwide. The highest F-score performances achieved for the Subtask 1 were: 77.17% for relation pair identification, 58.95% for relation type identification, 59.22% for novelty identification, and 44.55% when evaluating all of the above aspects of the comprehensive relation extraction. The highest F-score performances achieved for the Subtask 2 were: 55.84% for relation pair, 43.03% for relation type, 42.74% for novelty, and 32.75% for comprehensive relation extraction. The entire BioRED track dataset and other challenge materials are available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/ and https://codalab.lisn.upsaclay.fr/competitions/13377 and https://codalab.lisn.upsaclay.fr/competitions/13378. Database URL: https://ftp.ncbi.nlm.nih.gov/pub/lu/BC8-BioRED-track/https://codalab.lisn.upsaclay.fr/competitions/13377https://codalab.lisn.upsaclay.fr/competitions/13378.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1