Jiani Fu MM , Yiwen Zhang PhD , Xiaowen Cai PhD , Yong Huang PhD
{"title":"预测二甲双胍在改善多囊卵巢综合征和胰岛素抵抗妇女胰岛素敏感性方面的疗效:一项机器学习研究。","authors":"Jiani Fu MM , Yiwen Zhang PhD , Xiaowen Cai PhD , Yong Huang PhD","doi":"10.1016/j.eprac.2024.07.014","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Metformin is clinically effective in treating polycystic ovary syndrome (PCOS) with insulin resistance (IR), while its efficacy varies among individuals. This study aims to develop a machine learning model to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR.</div></div><div><h3>Methods</h3><div>This is a retrospective analysis of a multicenter, randomized controlled trial involving 114 women diagnosed with PCOS and IR. All women received metformin treatment for 4 months. We incorporated 27 baseline clinical variables of the women into the construction of our machine learning model. We firstly compared 4 commonly used feature selection methods to screen valuable clinical variables. Then we used the valuable variables as inputs to evaluate the performance of 5 machine learning models, including k-Nearest Neighbors, Support Vector Machine, Logistic Regression, Random Forest, and Extreme Gradient Boosting, in predicting the efficacy of metformin.</div></div><div><h3>Results</h3><div>Among the 5 machine learning models, Support Vector Machine performed the best with an area under the receiver operating characteristic curve of 0.781 (95% confidence interval [CI]: 0.772-0.791). The key predictive variables identified were homeostasis model assessment of insulin resistance, body mass index, and low-density lipoprotein cholesterol.</div></div><div><h3>Conclusion</h3><div>The developed machine learning model could be applied to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR. The result could help doctors evaluate the efficacy of metformin in advance, optimize treatment plans, and thereby enhance overall clinical outcomes.</div></div>","PeriodicalId":11682,"journal":{"name":"Endocrine Practice","volume":"30 11","pages":"Pages 1023-1030"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Metformin Efficacy in Improving Insulin Sensitivity Among Women With Polycystic Ovary Syndrome and Insulin Resistance: A Machine Learning Study\",\"authors\":\"Jiani Fu MM , Yiwen Zhang PhD , Xiaowen Cai PhD , Yong Huang PhD\",\"doi\":\"10.1016/j.eprac.2024.07.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Metformin is clinically effective in treating polycystic ovary syndrome (PCOS) with insulin resistance (IR), while its efficacy varies among individuals. This study aims to develop a machine learning model to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR.</div></div><div><h3>Methods</h3><div>This is a retrospective analysis of a multicenter, randomized controlled trial involving 114 women diagnosed with PCOS and IR. All women received metformin treatment for 4 months. We incorporated 27 baseline clinical variables of the women into the construction of our machine learning model. We firstly compared 4 commonly used feature selection methods to screen valuable clinical variables. Then we used the valuable variables as inputs to evaluate the performance of 5 machine learning models, including k-Nearest Neighbors, Support Vector Machine, Logistic Regression, Random Forest, and Extreme Gradient Boosting, in predicting the efficacy of metformin.</div></div><div><h3>Results</h3><div>Among the 5 machine learning models, Support Vector Machine performed the best with an area under the receiver operating characteristic curve of 0.781 (95% confidence interval [CI]: 0.772-0.791). The key predictive variables identified were homeostasis model assessment of insulin resistance, body mass index, and low-density lipoprotein cholesterol.</div></div><div><h3>Conclusion</h3><div>The developed machine learning model could be applied to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR. The result could help doctors evaluate the efficacy of metformin in advance, optimize treatment plans, and thereby enhance overall clinical outcomes.</div></div>\",\"PeriodicalId\":11682,\"journal\":{\"name\":\"Endocrine Practice\",\"volume\":\"30 11\",\"pages\":\"Pages 1023-1030\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine Practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1530891X2400644X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine Practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1530891X2400644X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Predicting Metformin Efficacy in Improving Insulin Sensitivity Among Women With Polycystic Ovary Syndrome and Insulin Resistance: A Machine Learning Study
Objective
Metformin is clinically effective in treating polycystic ovary syndrome (PCOS) with insulin resistance (IR), while its efficacy varies among individuals. This study aims to develop a machine learning model to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR.
Methods
This is a retrospective analysis of a multicenter, randomized controlled trial involving 114 women diagnosed with PCOS and IR. All women received metformin treatment for 4 months. We incorporated 27 baseline clinical variables of the women into the construction of our machine learning model. We firstly compared 4 commonly used feature selection methods to screen valuable clinical variables. Then we used the valuable variables as inputs to evaluate the performance of 5 machine learning models, including k-Nearest Neighbors, Support Vector Machine, Logistic Regression, Random Forest, and Extreme Gradient Boosting, in predicting the efficacy of metformin.
Results
Among the 5 machine learning models, Support Vector Machine performed the best with an area under the receiver operating characteristic curve of 0.781 (95% confidence interval [CI]: 0.772-0.791). The key predictive variables identified were homeostasis model assessment of insulin resistance, body mass index, and low-density lipoprotein cholesterol.
Conclusion
The developed machine learning model could be applied to predict the efficacy of metformin in improving insulin sensitivity among women with PCOS and IR. The result could help doctors evaluate the efficacy of metformin in advance, optimize treatment plans, and thereby enhance overall clinical outcomes.
期刊介绍:
Endocrine Practice (ISSN: 1530-891X), a peer-reviewed journal published twelve times a year, is the official journal of the American Association of Clinical Endocrinologists (AACE). The primary mission of Endocrine Practice is to enhance the health care of patients with endocrine diseases through continuing education of practicing endocrinologists.