Jan Skerswetat, Jingyi He, Jay Bijesh Shah, Nicolas Aycardi, Michelle Freeman, Peter John Bex
{"title":"一种用于测量视力的全新、自适应、自测和可推广的方法。","authors":"Jan Skerswetat, Jingyi He, Jay Bijesh Shah, Nicolas Aycardi, Michelle Freeman, Peter John Bex","doi":"10.1097/OPX.0000000000002160","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Angular Indication Measurement (AIM) is an adaptive, self-administered, and generalizable orientation-judgment method designed to interrogate visual functions. We introduce AIM Visual Acuity (VA) and show its features and outcome measures. Angular Indication Measurement VA's ability to detect defocus was comparable with that of an Early Treatment of Diabetic Retinopathy Study (ETDRS) letter chart and showed greater sensitivity to astigmatic blur.</p><p><strong>Purpose: </strong>This proof-of-concept study introduces Angular Indication Measurement and applies it to VA.</p><p><strong>Methods: </strong>First, we compared the ability of AIM-VA and ETDRS to detect defocus and astigmatic blur in 22 normally sighted adults. Spherical and cylindrical lenses in the dominant eye induced blur. Second, we compared repeatability over two tests of AIM-VA and ETDRS.</p><p><strong>Results: </strong>A repeated-measure analysis of variance showed a main effect for defocus blur and test. For the astigmatism experiment, an interaction between blur and orientation was found. Pairwise comparisons showed that AIM was more sensitive to astigmatic-induced VA loss than ETDRS. Bland-Altman plots showed small bias and no systematic learning effect for either test type and improved repeatability with more than two adaptive steps for AIM-VA.</p><p><strong>Conclusions: </strong>Angular Indication Measurement VA's ability to detect defocus was comparable with that of an ETDRS letter chart and showed greater sensitivity to induced astigmatic blur, and AIM-VA's repeatability is comparable with ETDRS when using two or more adaptive steps. Angular Indication Measurement's self-administered orientation judgment approach is generalizable to interrogate other visual functions, e.g., contrast, color, motion, and stereovision.</p>","PeriodicalId":19649,"journal":{"name":"Optometry and Vision Science","volume":"101 7","pages":"451-463"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323045/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new, adaptive, self-administered, and generalizable method used to measure visual acuity.\",\"authors\":\"Jan Skerswetat, Jingyi He, Jay Bijesh Shah, Nicolas Aycardi, Michelle Freeman, Peter John Bex\",\"doi\":\"10.1097/OPX.0000000000002160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Angular Indication Measurement (AIM) is an adaptive, self-administered, and generalizable orientation-judgment method designed to interrogate visual functions. We introduce AIM Visual Acuity (VA) and show its features and outcome measures. Angular Indication Measurement VA's ability to detect defocus was comparable with that of an Early Treatment of Diabetic Retinopathy Study (ETDRS) letter chart and showed greater sensitivity to astigmatic blur.</p><p><strong>Purpose: </strong>This proof-of-concept study introduces Angular Indication Measurement and applies it to VA.</p><p><strong>Methods: </strong>First, we compared the ability of AIM-VA and ETDRS to detect defocus and astigmatic blur in 22 normally sighted adults. Spherical and cylindrical lenses in the dominant eye induced blur. Second, we compared repeatability over two tests of AIM-VA and ETDRS.</p><p><strong>Results: </strong>A repeated-measure analysis of variance showed a main effect for defocus blur and test. For the astigmatism experiment, an interaction between blur and orientation was found. Pairwise comparisons showed that AIM was more sensitive to astigmatic-induced VA loss than ETDRS. Bland-Altman plots showed small bias and no systematic learning effect for either test type and improved repeatability with more than two adaptive steps for AIM-VA.</p><p><strong>Conclusions: </strong>Angular Indication Measurement VA's ability to detect defocus was comparable with that of an ETDRS letter chart and showed greater sensitivity to induced astigmatic blur, and AIM-VA's repeatability is comparable with ETDRS when using two or more adaptive steps. Angular Indication Measurement's self-administered orientation judgment approach is generalizable to interrogate other visual functions, e.g., contrast, color, motion, and stereovision.</p>\",\"PeriodicalId\":19649,\"journal\":{\"name\":\"Optometry and Vision Science\",\"volume\":\"101 7\",\"pages\":\"451-463\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323045/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optometry and Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/OPX.0000000000002160\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optometry and Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/OPX.0000000000002160","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
A new, adaptive, self-administered, and generalizable method used to measure visual acuity.
Significance: Angular Indication Measurement (AIM) is an adaptive, self-administered, and generalizable orientation-judgment method designed to interrogate visual functions. We introduce AIM Visual Acuity (VA) and show its features and outcome measures. Angular Indication Measurement VA's ability to detect defocus was comparable with that of an Early Treatment of Diabetic Retinopathy Study (ETDRS) letter chart and showed greater sensitivity to astigmatic blur.
Purpose: This proof-of-concept study introduces Angular Indication Measurement and applies it to VA.
Methods: First, we compared the ability of AIM-VA and ETDRS to detect defocus and astigmatic blur in 22 normally sighted adults. Spherical and cylindrical lenses in the dominant eye induced blur. Second, we compared repeatability over two tests of AIM-VA and ETDRS.
Results: A repeated-measure analysis of variance showed a main effect for defocus blur and test. For the astigmatism experiment, an interaction between blur and orientation was found. Pairwise comparisons showed that AIM was more sensitive to astigmatic-induced VA loss than ETDRS. Bland-Altman plots showed small bias and no systematic learning effect for either test type and improved repeatability with more than two adaptive steps for AIM-VA.
Conclusions: Angular Indication Measurement VA's ability to detect defocus was comparable with that of an ETDRS letter chart and showed greater sensitivity to induced astigmatic blur, and AIM-VA's repeatability is comparable with ETDRS when using two or more adaptive steps. Angular Indication Measurement's self-administered orientation judgment approach is generalizable to interrogate other visual functions, e.g., contrast, color, motion, and stereovision.
期刊介绍:
Optometry and Vision Science is the monthly peer-reviewed scientific publication of the American Academy of Optometry, publishing original research since 1924. Optometry and Vision Science is an internationally recognized source for education and information on current discoveries in optometry, physiological optics, vision science, and related fields. The journal considers original contributions that advance clinical practice, vision science, and public health. Authors should remember that the journal reaches readers worldwide and their submissions should be relevant and of interest to a broad audience. Topical priorities include, but are not limited to: clinical and laboratory research, evidence-based reviews, contact lenses, ocular growth and refractive error development, eye movements, visual function and perception, biology of the eye and ocular disease, epidemiology and public health, biomedical optics and instrumentation, novel and important clinical observations and treatments, and optometric education.