{"title":"完善 N6-甲基腺苷在癌症中的作用。","authors":"Jonas Koch, Frank Lyko","doi":"10.1016/j.gde.2024.102242","DOIUrl":null,"url":null,"abstract":"<div><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most abundant internal modification of eukaryotic mRNAs. m<sup>6</sup>A affects the fate of its targets in all aspects of the mRNA life cycle and has important roles in various physiological and pathophysiological processes. Aberrant m<sup>6</sup>A patterns have been observed in numerous cancers and appear closely linked to oncogenic phenotypes. However, most studies relied on antibody-dependent modification detection, which is known to suffer from important limitations. Novel, antibody-independent, quantitative approaches will be critical to investigate changes in the m<sup>6</sup>A landscape of cancers. Furthermore, pharmaceutical targeting of the m<sup>6</sup>A writer Methyltransferase-like 3 (METTL3) has demonstrated the potential to modulate cancer cell phenotypes. However, the enzyme also appears to be essential for the viability of healthy cells. Further refinement of therapeutic strategies is therefore needed to fully realize the potential of m<sup>6</sup>A-related cancer therapies.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"88 ","pages":"Article 102242"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959437X24000911/pdfft?md5=4732d3b06b3d83e6fff7e80d2ffd7fe9&pid=1-s2.0-S0959437X24000911-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Refining the role of N6-methyladenosine in cancer\",\"authors\":\"Jonas Koch, Frank Lyko\",\"doi\":\"10.1016/j.gde.2024.102242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most abundant internal modification of eukaryotic mRNAs. m<sup>6</sup>A affects the fate of its targets in all aspects of the mRNA life cycle and has important roles in various physiological and pathophysiological processes. Aberrant m<sup>6</sup>A patterns have been observed in numerous cancers and appear closely linked to oncogenic phenotypes. However, most studies relied on antibody-dependent modification detection, which is known to suffer from important limitations. Novel, antibody-independent, quantitative approaches will be critical to investigate changes in the m<sup>6</sup>A landscape of cancers. Furthermore, pharmaceutical targeting of the m<sup>6</sup>A writer Methyltransferase-like 3 (METTL3) has demonstrated the potential to modulate cancer cell phenotypes. However, the enzyme also appears to be essential for the viability of healthy cells. Further refinement of therapeutic strategies is therefore needed to fully realize the potential of m<sup>6</sup>A-related cancer therapies.</p></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":\"88 \",\"pages\":\"Article 102242\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000911/pdfft?md5=4732d3b06b3d83e6fff7e80d2ffd7fe9&pid=1-s2.0-S0959437X24000911-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000911\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000911","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
N6-methyladenosine (m6A) is the most abundant internal modification of eukaryotic mRNAs. m6A affects the fate of its targets in all aspects of the mRNA life cycle and has important roles in various physiological and pathophysiological processes. Aberrant m6A patterns have been observed in numerous cancers and appear closely linked to oncogenic phenotypes. However, most studies relied on antibody-dependent modification detection, which is known to suffer from important limitations. Novel, antibody-independent, quantitative approaches will be critical to investigate changes in the m6A landscape of cancers. Furthermore, pharmaceutical targeting of the m6A writer Methyltransferase-like 3 (METTL3) has demonstrated the potential to modulate cancer cell phenotypes. However, the enzyme also appears to be essential for the viability of healthy cells. Further refinement of therapeutic strategies is therefore needed to fully realize the potential of m6A-related cancer therapies.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)