胰岛移植和三维胰岛模型中的血管与免疫相互作用。

IF 3.7 2区 生物学 Q2 CELL BIOLOGY Current Opinion in Genetics & Development Pub Date : 2024-08-06 DOI:10.1016/j.gde.2024.102237
Adriana Migliorini , M Cristina Nostro
{"title":"胰岛移植和三维胰岛模型中的血管与免疫相互作用。","authors":"Adriana Migliorini ,&nbsp;M Cristina Nostro","doi":"10.1016/j.gde.2024.102237","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of regenerative medicine is to restore specific functions to damaged cells or tissues. A crucial aspect of success lies in effectively reintegrating these cells or tissues within the recipient organism. This is particularly pertinent for diabetes, where islet function relies on the close connection of beta cells to the bloodstream for glucose sensing and insulin release. Central to this approach is the need to establish a fast connection with the host’s vascular system. In this review, we explore the intricate relationships between endocrine, vascular, and immune cell interactions in transplantation outcomes. We also delve into recent strategies aimed at enhancing engraftment, along with the utilization of <em>in vitro</em> platforms to model cellular interactions.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"88 ","pages":"Article 102237"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959437X24000868/pdfft?md5=ef5b9437dc85a56389b37911de2cdf35&pid=1-s2.0-S0959437X24000868-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Vascular and immune interactions in islets transplantation and 3D islet models\",\"authors\":\"Adriana Migliorini ,&nbsp;M Cristina Nostro\",\"doi\":\"10.1016/j.gde.2024.102237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of regenerative medicine is to restore specific functions to damaged cells or tissues. A crucial aspect of success lies in effectively reintegrating these cells or tissues within the recipient organism. This is particularly pertinent for diabetes, where islet function relies on the close connection of beta cells to the bloodstream for glucose sensing and insulin release. Central to this approach is the need to establish a fast connection with the host’s vascular system. In this review, we explore the intricate relationships between endocrine, vascular, and immune cell interactions in transplantation outcomes. We also delve into recent strategies aimed at enhancing engraftment, along with the utilization of <em>in vitro</em> platforms to model cellular interactions.</p></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":\"88 \",\"pages\":\"Article 102237\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000868/pdfft?md5=ef5b9437dc85a56389b37911de2cdf35&pid=1-s2.0-S0959437X24000868-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000868\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000868","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

再生医学的目的是恢复受损细胞或组织的特定功能。成功的关键在于有效地将这些细胞或组织重新整合到受体机体内。这一点对糖尿病患者尤为重要,因为糖尿病患者的胰岛功能依赖于β细胞与血液的密切联系,以感知葡萄糖并释放胰岛素。这种方法的核心是需要与宿主的血管系统建立快速连接。在这篇综述中,我们探讨了移植结果中内分泌、血管和免疫细胞相互作用之间错综复杂的关系。我们还深入探讨了旨在增强移植效果的最新策略,以及利用体外平台模拟细胞相互作用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vascular and immune interactions in islets transplantation and 3D islet models

The aim of regenerative medicine is to restore specific functions to damaged cells or tissues. A crucial aspect of success lies in effectively reintegrating these cells or tissues within the recipient organism. This is particularly pertinent for diabetes, where islet function relies on the close connection of beta cells to the bloodstream for glucose sensing and insulin release. Central to this approach is the need to establish a fast connection with the host’s vascular system. In this review, we explore the intricate relationships between endocrine, vascular, and immune cell interactions in transplantation outcomes. We also delve into recent strategies aimed at enhancing engraftment, along with the utilization of in vitro platforms to model cellular interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
102
审稿时长
1 months
期刊介绍: Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...] The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year: • Cancer Genomics • Genome Architecture and Expression • Molecular and genetic basis of disease • Developmental mechanisms, patterning and evolution • Cell reprogramming, regeneration and repair • Genetics of Human Origin / Evolutionary genetics (alternate years)
期刊最新文献
In vitro dynamics of DNA loop extrusion by structural maintenance of chromosomes complexes Novelty versus innovation of gene regulatory elements in human evolution and disease Editorial Board Circuit integration by transplanted human neurons Control of cell fate upon transcription factor–driven cardiac reprogramming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1