{"title":"论垂直接地电极的高频性能和 LRM 应用","authors":"Omar Kherif;Stephen Robson;Huw Griffiths;Noureddine Harid;David Thorpe;Abderrahmane Haddad","doi":"10.1109/TEMC.2024.3435788","DOIUrl":null,"url":null,"abstract":"This article addresses the critical need to reduce grounding impedance for the protection of both individuals and electrical equipment under normal and faulty conditions. While numerous techniques exist for low-frequency applications, challenges arise at higher frequencies due to the inductive behavior inherent in grounding systems. The efficacy of low resistivity material as a solution to decrease grounding impedance at high frequencies is investigated. Through experimental studies using vertical ground electrodes with varied lengths and some backfilled with a commercial conductive aggregate compound, grounding impedance is analyzed across the frequency range between 10 Hz and 10 MHz. A considerable reduction in grounding impedance is achieved. Based on these findings and other published results, practical insights for designing effective grounding systems are derived, where alternative arrangements are proposed, exhibiting promising results for further enhancing high-frequency performance.","PeriodicalId":55012,"journal":{"name":"IEEE Transactions on Electromagnetic Compatibility","volume":"66 5","pages":"1655-1664"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the High Frequency Performance of Vertical Ground Electrodes and LRM Application\",\"authors\":\"Omar Kherif;Stephen Robson;Huw Griffiths;Noureddine Harid;David Thorpe;Abderrahmane Haddad\",\"doi\":\"10.1109/TEMC.2024.3435788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article addresses the critical need to reduce grounding impedance for the protection of both individuals and electrical equipment under normal and faulty conditions. While numerous techniques exist for low-frequency applications, challenges arise at higher frequencies due to the inductive behavior inherent in grounding systems. The efficacy of low resistivity material as a solution to decrease grounding impedance at high frequencies is investigated. Through experimental studies using vertical ground electrodes with varied lengths and some backfilled with a commercial conductive aggregate compound, grounding impedance is analyzed across the frequency range between 10 Hz and 10 MHz. A considerable reduction in grounding impedance is achieved. Based on these findings and other published results, practical insights for designing effective grounding systems are derived, where alternative arrangements are proposed, exhibiting promising results for further enhancing high-frequency performance.\",\"PeriodicalId\":55012,\"journal\":{\"name\":\"IEEE Transactions on Electromagnetic Compatibility\",\"volume\":\"66 5\",\"pages\":\"1655-1664\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electromagnetic Compatibility\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10630609/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electromagnetic Compatibility","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10630609/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
On the High Frequency Performance of Vertical Ground Electrodes and LRM Application
This article addresses the critical need to reduce grounding impedance for the protection of both individuals and electrical equipment under normal and faulty conditions. While numerous techniques exist for low-frequency applications, challenges arise at higher frequencies due to the inductive behavior inherent in grounding systems. The efficacy of low resistivity material as a solution to decrease grounding impedance at high frequencies is investigated. Through experimental studies using vertical ground electrodes with varied lengths and some backfilled with a commercial conductive aggregate compound, grounding impedance is analyzed across the frequency range between 10 Hz and 10 MHz. A considerable reduction in grounding impedance is achieved. Based on these findings and other published results, practical insights for designing effective grounding systems are derived, where alternative arrangements are proposed, exhibiting promising results for further enhancing high-frequency performance.
期刊介绍:
IEEE Transactions on Electromagnetic Compatibility publishes original and significant contributions related to all disciplines of electromagnetic compatibility (EMC) and relevant methods to predict, assess and prevent electromagnetic interference (EMI) and increase device/product immunity. The scope of the publication includes, but is not limited to Electromagnetic Environments; Interference Control; EMC and EMI Modeling; High Power Electromagnetics; EMC Standards, Methods of EMC Measurements; Computational Electromagnetics and Signal and Power Integrity, as applied or directly related to Electromagnetic Compatibility problems; Transmission Lines; Electrostatic Discharge and Lightning Effects; EMC in Wireless and Optical Technologies; EMC in Printed Circuit Board and System Design.