{"title":"组合拉普拉斯和霍奇拉普拉斯:异同","authors":"Emily Ribando-Gros, Rui Wang, Jiahui Chen, Yiying Tong, Guo-Wei Wei","doi":"10.1137/22m1482299","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 66, Issue 3, Page 575-601, May 2024. <br/> As key subjects in spectral geometry and combinatorial graph theory, respectively, the (continuous) Hodge Laplacian and the combinatorial Laplacian share similarities in revealing the topological dimension and geometric shape of data and in their realization of diffusion and minimization of harmonic measures. It is believed that they also both associate with vector calculus, through the gradient, curl, and divergence, as argued in the popular usage of “Hodge Laplacians on graphs” in the literature. Nevertheless, these Laplacians are intrinsically different in their domains of definitions and applicability to specific data formats, hindering any in-depth comparison of the two approaches. For example, the spectral decomposition of a vector field on a simple point cloud using combinatorial Laplacians defined on some commonly used simplicial complexes does not give rise to the same curl-free and divergence-free components that one would obtain from the spectral decomposition of a vector field using either the continuous Hodge Laplacians defined on differential forms in manifolds or the discretized Hodge Laplacians defined on a point cloud with boundary in the Eulerian representation or on a regular mesh in the Eulerian representation. To facilitate the comparison and bridge the gap between the combinatorial Laplacian and Hodge Laplacian for the discretization of continuous manifolds with boundary, we further introduce boundary-induced graph (BIG) Laplacians using tools from discrete exterior calculus (DEC). BIG Laplacians are defined on discrete domains with appropriate boundary conditions to characterize the topology and shape of data. The similarities and differences among the combinatorial Laplacian, BIG Laplacian, and Hodge Laplacian are then examined. Through an Eulerian representation of 3D domains as level-set functions on regular grids, we show experimentally the conditions for the convergence of BIG Laplacian eigenvalues to those of the Hodge Laplacian for elementary shapes.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"367 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial and Hodge Laplacians: Similarities and Differences\",\"authors\":\"Emily Ribando-Gros, Rui Wang, Jiahui Chen, Yiying Tong, Guo-Wei Wei\",\"doi\":\"10.1137/22m1482299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Review, Volume 66, Issue 3, Page 575-601, May 2024. <br/> As key subjects in spectral geometry and combinatorial graph theory, respectively, the (continuous) Hodge Laplacian and the combinatorial Laplacian share similarities in revealing the topological dimension and geometric shape of data and in their realization of diffusion and minimization of harmonic measures. It is believed that they also both associate with vector calculus, through the gradient, curl, and divergence, as argued in the popular usage of “Hodge Laplacians on graphs” in the literature. Nevertheless, these Laplacians are intrinsically different in their domains of definitions and applicability to specific data formats, hindering any in-depth comparison of the two approaches. For example, the spectral decomposition of a vector field on a simple point cloud using combinatorial Laplacians defined on some commonly used simplicial complexes does not give rise to the same curl-free and divergence-free components that one would obtain from the spectral decomposition of a vector field using either the continuous Hodge Laplacians defined on differential forms in manifolds or the discretized Hodge Laplacians defined on a point cloud with boundary in the Eulerian representation or on a regular mesh in the Eulerian representation. To facilitate the comparison and bridge the gap between the combinatorial Laplacian and Hodge Laplacian for the discretization of continuous manifolds with boundary, we further introduce boundary-induced graph (BIG) Laplacians using tools from discrete exterior calculus (DEC). BIG Laplacians are defined on discrete domains with appropriate boundary conditions to characterize the topology and shape of data. The similarities and differences among the combinatorial Laplacian, BIG Laplacian, and Hodge Laplacian are then examined. Through an Eulerian representation of 3D domains as level-set functions on regular grids, we show experimentally the conditions for the convergence of BIG Laplacian eigenvalues to those of the Hodge Laplacian for elementary shapes.\",\"PeriodicalId\":49525,\"journal\":{\"name\":\"SIAM Review\",\"volume\":\"367 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1482299\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1482299","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Combinatorial and Hodge Laplacians: Similarities and Differences
SIAM Review, Volume 66, Issue 3, Page 575-601, May 2024. As key subjects in spectral geometry and combinatorial graph theory, respectively, the (continuous) Hodge Laplacian and the combinatorial Laplacian share similarities in revealing the topological dimension and geometric shape of data and in their realization of diffusion and minimization of harmonic measures. It is believed that they also both associate with vector calculus, through the gradient, curl, and divergence, as argued in the popular usage of “Hodge Laplacians on graphs” in the literature. Nevertheless, these Laplacians are intrinsically different in their domains of definitions and applicability to specific data formats, hindering any in-depth comparison of the two approaches. For example, the spectral decomposition of a vector field on a simple point cloud using combinatorial Laplacians defined on some commonly used simplicial complexes does not give rise to the same curl-free and divergence-free components that one would obtain from the spectral decomposition of a vector field using either the continuous Hodge Laplacians defined on differential forms in manifolds or the discretized Hodge Laplacians defined on a point cloud with boundary in the Eulerian representation or on a regular mesh in the Eulerian representation. To facilitate the comparison and bridge the gap between the combinatorial Laplacian and Hodge Laplacian for the discretization of continuous manifolds with boundary, we further introduce boundary-induced graph (BIG) Laplacians using tools from discrete exterior calculus (DEC). BIG Laplacians are defined on discrete domains with appropriate boundary conditions to characterize the topology and shape of data. The similarities and differences among the combinatorial Laplacian, BIG Laplacian, and Hodge Laplacian are then examined. Through an Eulerian representation of 3D domains as level-set functions on regular grids, we show experimentally the conditions for the convergence of BIG Laplacian eigenvalues to those of the Hodge Laplacian for elementary shapes.
期刊介绍:
Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter.
Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.