{"title":"通过可解释的注意力机制提高数据驱动分析荧光激发-发射矩阵光谱的注意力","authors":"Run-Ze Xu, Jia-Shun Cao, Jing-Yang Luo, Bing-Jie Ni, Fang Fang, Weijing Liu, Peifang Wang","doi":"10.1038/s41545-024-00367-w","DOIUrl":null,"url":null,"abstract":"Analyzing three-dimensional excitation-emission matrix (3D-EEM) spectra through machine learning models has drawn increasing attention, whereas the reliability of these machine learning models remains unclear due to their “black box” nature. In this study, the convolutional neural network (CNN) for classifying numbers of fluorescent components in 3D-EEM spectra was interpreted by gradient-weighted class activation mapping (Grad-CAM), guided Grad-CAM, and structured attention graphs (SAGs). Results showed that the original CNN classifier with high classification accuracy may make a classification based on misleading attention to the non-fluorescence area in 3D-EEM spectra. By removing Rayleigh scatterings in 3D-EEM spectra and integrating convolutional block attention module (CBAM) in CNN classifiers, the correct attention of the trained CNN classifier with CBAM greatly increased from 17.6% to 57.2%. This work formulated strategies for improving CNN classifiers associated with environmental fields and would provide great help for water determination in both natural and artificial environments.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00367-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Attention improvement for data-driven analyzing fluorescence excitation-emission matrix spectra via interpretable attention mechanism\",\"authors\":\"Run-Ze Xu, Jia-Shun Cao, Jing-Yang Luo, Bing-Jie Ni, Fang Fang, Weijing Liu, Peifang Wang\",\"doi\":\"10.1038/s41545-024-00367-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing three-dimensional excitation-emission matrix (3D-EEM) spectra through machine learning models has drawn increasing attention, whereas the reliability of these machine learning models remains unclear due to their “black box” nature. In this study, the convolutional neural network (CNN) for classifying numbers of fluorescent components in 3D-EEM spectra was interpreted by gradient-weighted class activation mapping (Grad-CAM), guided Grad-CAM, and structured attention graphs (SAGs). Results showed that the original CNN classifier with high classification accuracy may make a classification based on misleading attention to the non-fluorescence area in 3D-EEM spectra. By removing Rayleigh scatterings in 3D-EEM spectra and integrating convolutional block attention module (CBAM) in CNN classifiers, the correct attention of the trained CNN classifier with CBAM greatly increased from 17.6% to 57.2%. This work formulated strategies for improving CNN classifiers associated with environmental fields and would provide great help for water determination in both natural and artificial environments.\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-024-00367-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-024-00367-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00367-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Attention improvement for data-driven analyzing fluorescence excitation-emission matrix spectra via interpretable attention mechanism
Analyzing three-dimensional excitation-emission matrix (3D-EEM) spectra through machine learning models has drawn increasing attention, whereas the reliability of these machine learning models remains unclear due to their “black box” nature. In this study, the convolutional neural network (CNN) for classifying numbers of fluorescent components in 3D-EEM spectra was interpreted by gradient-weighted class activation mapping (Grad-CAM), guided Grad-CAM, and structured attention graphs (SAGs). Results showed that the original CNN classifier with high classification accuracy may make a classification based on misleading attention to the non-fluorescence area in 3D-EEM spectra. By removing Rayleigh scatterings in 3D-EEM spectra and integrating convolutional block attention module (CBAM) in CNN classifiers, the correct attention of the trained CNN classifier with CBAM greatly increased from 17.6% to 57.2%. This work formulated strategies for improving CNN classifiers associated with environmental fields and would provide great help for water determination in both natural and artificial environments.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.