Nur Asyura Nor Amdan , Nur Atikah Shahrulzamri , Rohaidah Hashim , Norashirene Mohamad Jamil
{"title":"了解大环内酯类药物耐药性的演变:微型综述。","authors":"Nur Asyura Nor Amdan , Nur Atikah Shahrulzamri , Rohaidah Hashim , Norashirene Mohamad Jamil","doi":"10.1016/j.jgar.2024.07.016","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Macrolides inhibit the growth of bacterial cells by preventing the elongation of polypeptides during protein biosynthesis and include natural, synthetic, and semi-synthetic products. Elongation prevention occurs by blocking the passage of the polypeptide chain as the macrolides bind at the nascent peptide exit tunnel.</p></div><div><h3>Objective</h3><p>Recent data of ribosome profiling via ribo-seq further proves that, other than blocking the polypeptide chain, macrolides are also able to affect the synthesis of individual proteins. Thus, this shows that the mode of action of macrolides is more complex than we initially thought. Since the discovery of macrolides in the 1950s, they have been widely used in veterinary practice, agriculture, and medicine. Due to misuse and overuse of antibiotics, bacteria have acquired resistance against them. Hence, it is of utmost importance for us to fully understand the mode of action of macrolides as well as the mechanisms of resistance against macrolides in order to mitigate antibiotic-resistance issues.</p></div><div><h3>Results</h3><p>Chemical modifications can be performed to improve macrolide potency if we have a better understanding of their mode of action. Furthermore, a complete and detailed understanding of the mode of action of macrolides has remained vague, as new findings have challenged theories that are already in existence—due to this obscurity, research into macrolide modes of action continues to this day.</p></div><div><h3>Conclusion</h3><p>In this review, we present an overview of macrolide antibiotics, with an emphasis on the latest knowledge regarding the mode of action of macrolides as well as the mechanisms of resistance employed by bacteria against macrolides.</p></div>","PeriodicalId":15936,"journal":{"name":"Journal of global antimicrobial resistance","volume":"38 ","pages":"Pages 368-375"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213716524001474/pdfft?md5=08cc73f5ea14a81dd49aeb2599265129&pid=1-s2.0-S2213716524001474-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Understanding the evolution of macrolides resistance: A mini review\",\"authors\":\"Nur Asyura Nor Amdan , Nur Atikah Shahrulzamri , Rohaidah Hashim , Norashirene Mohamad Jamil\",\"doi\":\"10.1016/j.jgar.2024.07.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Macrolides inhibit the growth of bacterial cells by preventing the elongation of polypeptides during protein biosynthesis and include natural, synthetic, and semi-synthetic products. Elongation prevention occurs by blocking the passage of the polypeptide chain as the macrolides bind at the nascent peptide exit tunnel.</p></div><div><h3>Objective</h3><p>Recent data of ribosome profiling via ribo-seq further proves that, other than blocking the polypeptide chain, macrolides are also able to affect the synthesis of individual proteins. Thus, this shows that the mode of action of macrolides is more complex than we initially thought. Since the discovery of macrolides in the 1950s, they have been widely used in veterinary practice, agriculture, and medicine. Due to misuse and overuse of antibiotics, bacteria have acquired resistance against them. Hence, it is of utmost importance for us to fully understand the mode of action of macrolides as well as the mechanisms of resistance against macrolides in order to mitigate antibiotic-resistance issues.</p></div><div><h3>Results</h3><p>Chemical modifications can be performed to improve macrolide potency if we have a better understanding of their mode of action. Furthermore, a complete and detailed understanding of the mode of action of macrolides has remained vague, as new findings have challenged theories that are already in existence—due to this obscurity, research into macrolide modes of action continues to this day.</p></div><div><h3>Conclusion</h3><p>In this review, we present an overview of macrolide antibiotics, with an emphasis on the latest knowledge regarding the mode of action of macrolides as well as the mechanisms of resistance employed by bacteria against macrolides.</p></div>\",\"PeriodicalId\":15936,\"journal\":{\"name\":\"Journal of global antimicrobial resistance\",\"volume\":\"38 \",\"pages\":\"Pages 368-375\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213716524001474/pdfft?md5=08cc73f5ea14a81dd49aeb2599265129&pid=1-s2.0-S2213716524001474-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of global antimicrobial resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213716524001474\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of global antimicrobial resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213716524001474","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Understanding the evolution of macrolides resistance: A mini review
Background
Macrolides inhibit the growth of bacterial cells by preventing the elongation of polypeptides during protein biosynthesis and include natural, synthetic, and semi-synthetic products. Elongation prevention occurs by blocking the passage of the polypeptide chain as the macrolides bind at the nascent peptide exit tunnel.
Objective
Recent data of ribosome profiling via ribo-seq further proves that, other than blocking the polypeptide chain, macrolides are also able to affect the synthesis of individual proteins. Thus, this shows that the mode of action of macrolides is more complex than we initially thought. Since the discovery of macrolides in the 1950s, they have been widely used in veterinary practice, agriculture, and medicine. Due to misuse and overuse of antibiotics, bacteria have acquired resistance against them. Hence, it is of utmost importance for us to fully understand the mode of action of macrolides as well as the mechanisms of resistance against macrolides in order to mitigate antibiotic-resistance issues.
Results
Chemical modifications can be performed to improve macrolide potency if we have a better understanding of their mode of action. Furthermore, a complete and detailed understanding of the mode of action of macrolides has remained vague, as new findings have challenged theories that are already in existence—due to this obscurity, research into macrolide modes of action continues to this day.
Conclusion
In this review, we present an overview of macrolide antibiotics, with an emphasis on the latest knowledge regarding the mode of action of macrolides as well as the mechanisms of resistance employed by bacteria against macrolides.
期刊介绍:
The Journal of Global Antimicrobial Resistance (JGAR) is a quarterly online journal run by an international Editorial Board that focuses on the global spread of antibiotic-resistant microbes.
JGAR is a dedicated journal for all professionals working in research, health care, the environment and animal infection control, aiming to track the resistance threat worldwide and provides a single voice devoted to antimicrobial resistance (AMR).
Featuring peer-reviewed and up to date research articles, reviews, short notes and hot topics JGAR covers the key topics related to antibacterial, antiviral, antifungal and antiparasitic resistance.