TetR 家族调节因子 AbrT 控制林肯链霉菌的林可霉素生产和形态发育。

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbial Cell Factories Pub Date : 2024-08-08 DOI:10.1186/s12934-024-02498-8
Yurong Xu, Meng Liu, Ruidong Zhao, Yue Pan, Panpan Wu, Chi Zhang, Xiangying Chi, Buchang Zhang, Hang Wu
{"title":"TetR 家族调节因子 AbrT 控制林肯链霉菌的林可霉素生产和形态发育。","authors":"Yurong Xu, Meng Liu, Ruidong Zhao, Yue Pan, Panpan Wu, Chi Zhang, Xiangying Chi, Buchang Zhang, Hang Wu","doi":"10.1186/s12934-024-02498-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The TetR family of transcriptional regulators (TFRs), serving as crucial regulators of diverse cellular processes, undergo conformational changes induced by small-molecule ligands, which either inhibit or activate them to modulate target gene expression. Some ligands of TFRs in actinomycetes and their regulatory effects have been identified and studied; however, regulatory mechanisms of the TetR family in the lincomycin-producing Streptomyces lincolnensis remain poorly understood.</p><p><strong>Results: </strong>In this study, we found that AbrT (SLCG_1979), a TetR family regulator, plays a pivotal role in regulating lincomycin production and morphological development in S. lincolnensis. Deletion of abrT gene resulted in increased lincomycin A (Lin-A) production, but delayed mycelium formation and sporulation on solid media. AbrT directly or indirectly repressed the expression of lincomycin biosynthetic (lin) cluster genes and activated that of the morphological developmental genes amfC, whiB, and ftsZ. We demonstrated that AbrT bound to two motifs (5'-CGCGTACTCGTA-3' and 5'-CGTACGATAGCT-3') present in the bidirectional promoter between abrT and SLCG_1980 genes. This consequently repressed abrT itself and its adjacent gene SLCG_1980 that encodes an arabinose efflux permease. D-arabinose, not naturally occurring as L-arabinose, was identified as the effector molecule of AbrT, reducing its binding affinity to abrT-SLCG_1980 intergenic region. Furthermore, based on functional analysis of the AbrT homologue in Saccharopolyspora erythraea, we inferred that the TetR family regulator AbrT may play an important role in regulating secondary metabolism in actinomycetes.</p><p><strong>Conclusions: </strong>AbrT functions as a regulator for governing lincomycin production and morphological development of S. lincolnensis. Our findings demonstrated that D-arabinose acts as a ligand of AbrT to mediate the regulation of lincomycin biosynthesis in S. lincolnensis. Our findings provide novel insights into ligand-mediated regulation in antibiotic biosynthesis.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308395/pdf/","citationCount":"0","resultStr":"{\"title\":\"TetR family regulator AbrT controls lincomycin production and morphological development in Streptomyces lincolnensis.\",\"authors\":\"Yurong Xu, Meng Liu, Ruidong Zhao, Yue Pan, Panpan Wu, Chi Zhang, Xiangying Chi, Buchang Zhang, Hang Wu\",\"doi\":\"10.1186/s12934-024-02498-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The TetR family of transcriptional regulators (TFRs), serving as crucial regulators of diverse cellular processes, undergo conformational changes induced by small-molecule ligands, which either inhibit or activate them to modulate target gene expression. Some ligands of TFRs in actinomycetes and their regulatory effects have been identified and studied; however, regulatory mechanisms of the TetR family in the lincomycin-producing Streptomyces lincolnensis remain poorly understood.</p><p><strong>Results: </strong>In this study, we found that AbrT (SLCG_1979), a TetR family regulator, plays a pivotal role in regulating lincomycin production and morphological development in S. lincolnensis. Deletion of abrT gene resulted in increased lincomycin A (Lin-A) production, but delayed mycelium formation and sporulation on solid media. AbrT directly or indirectly repressed the expression of lincomycin biosynthetic (lin) cluster genes and activated that of the morphological developmental genes amfC, whiB, and ftsZ. We demonstrated that AbrT bound to two motifs (5'-CGCGTACTCGTA-3' and 5'-CGTACGATAGCT-3') present in the bidirectional promoter between abrT and SLCG_1980 genes. This consequently repressed abrT itself and its adjacent gene SLCG_1980 that encodes an arabinose efflux permease. D-arabinose, not naturally occurring as L-arabinose, was identified as the effector molecule of AbrT, reducing its binding affinity to abrT-SLCG_1980 intergenic region. Furthermore, based on functional analysis of the AbrT homologue in Saccharopolyspora erythraea, we inferred that the TetR family regulator AbrT may play an important role in regulating secondary metabolism in actinomycetes.</p><p><strong>Conclusions: </strong>AbrT functions as a regulator for governing lincomycin production and morphological development of S. lincolnensis. Our findings demonstrated that D-arabinose acts as a ligand of AbrT to mediate the regulation of lincomycin biosynthesis in S. lincolnensis. Our findings provide novel insights into ligand-mediated regulation in antibiotic biosynthesis.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308395/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-024-02498-8\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02498-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:TetR转录调节因子(TFRs)家族是多种细胞过程的关键调节因子,在小分子配体的诱导下发生构象变化,从而抑制或激活它们来调节靶基因的表达。放线菌中 TFR 的一些配体及其调控作用已被发现和研究;然而,人们对产林可霉素链霉菌中 TetR 家族的调控机制仍然知之甚少:结果:本研究发现,林肯链霉菌中的 TetR 家族调控因子 AbrT(SLCG_1979)在林肯链霉菌的林可霉素生产和形态发育过程中起着关键的调控作用。删除 abrT 基因会导致林可霉素 A(Lin-A)产量增加,但会延迟固体培养基上菌丝的形成和孢子的产生。AbrT 直接或间接抑制了林可霉素生物合成(lin)簇基因的表达,激活了形态发育基因 amfC、whiB 和 ftsZ 的表达。我们证明了 AbrT 与两个基团(5'-CGCGTACTCGTA-3' 和 5'-CGTACGATAGCT-3')的结合,这两个基团存在于 abrT 和 SLCG_1980 基因之间的双向启动子中。这就抑制了 abrT 本身及其相邻的编码阿拉伯糖外排渗透酶的基因 SLCG_1980。D-arabinose 与天然存在的 L-arabinose 不同,被确定为 AbrT 的效应分子,降低了其与 abrT-SLCG_1980 基因间区域的结合亲和力。此外,根据对红藻糖孢菌(Saccharopolyspora erythraea)中 AbrT 同源物的功能分析,我们推断 TetR 家族调控因子 AbrT 可能在放线菌次生代谢的调控中发挥重要作用:结论:AbrT是林肯菌生产林可霉素和形态发育的调控因子。我们的研究结果表明,D-阿拉伯糖作为 AbrT 的配体介导了林肯菌中林可霉素生物合成的调控。我们的发现为配体介导的抗生素生物合成调控提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TetR family regulator AbrT controls lincomycin production and morphological development in Streptomyces lincolnensis.

Background: The TetR family of transcriptional regulators (TFRs), serving as crucial regulators of diverse cellular processes, undergo conformational changes induced by small-molecule ligands, which either inhibit or activate them to modulate target gene expression. Some ligands of TFRs in actinomycetes and their regulatory effects have been identified and studied; however, regulatory mechanisms of the TetR family in the lincomycin-producing Streptomyces lincolnensis remain poorly understood.

Results: In this study, we found that AbrT (SLCG_1979), a TetR family regulator, plays a pivotal role in regulating lincomycin production and morphological development in S. lincolnensis. Deletion of abrT gene resulted in increased lincomycin A (Lin-A) production, but delayed mycelium formation and sporulation on solid media. AbrT directly or indirectly repressed the expression of lincomycin biosynthetic (lin) cluster genes and activated that of the morphological developmental genes amfC, whiB, and ftsZ. We demonstrated that AbrT bound to two motifs (5'-CGCGTACTCGTA-3' and 5'-CGTACGATAGCT-3') present in the bidirectional promoter between abrT and SLCG_1980 genes. This consequently repressed abrT itself and its adjacent gene SLCG_1980 that encodes an arabinose efflux permease. D-arabinose, not naturally occurring as L-arabinose, was identified as the effector molecule of AbrT, reducing its binding affinity to abrT-SLCG_1980 intergenic region. Furthermore, based on functional analysis of the AbrT homologue in Saccharopolyspora erythraea, we inferred that the TetR family regulator AbrT may play an important role in regulating secondary metabolism in actinomycetes.

Conclusions: AbrT functions as a regulator for governing lincomycin production and morphological development of S. lincolnensis. Our findings demonstrated that D-arabinose acts as a ligand of AbrT to mediate the regulation of lincomycin biosynthesis in S. lincolnensis. Our findings provide novel insights into ligand-mediated regulation in antibiotic biosynthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
期刊最新文献
De novo biosynthesis of β-Arbutin in Komagataella phaffii based on metabolic engineering strategies. The influence of growth rate-controlling feeding strategy on the surfactin production in Bacillus subtilis bioreactor processes. Novel nanoconjugates of metal oxides and natural red pigment from the endophyte Monascus ruber using solid-state fermentation. Continuous production of chitooligosaccharides in a column reactor by the PUF-immobilized whole cell enzymes of Mucor circinelloides IBT-83. Correction: Enhancement of vitamin B6 production driven by omics analysis combined with fermentation optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1