膳食氧环扎腈会影响瘿蚊(鳞翅目:稚虫科)的抗氧化酶活性并破坏其 DNA。

IF 1.8 3区 农林科学 Q2 ENTOMOLOGY Environmental Entomology Pub Date : 2024-10-11 DOI:10.1093/ee/nvae070
Cihat Çelik, David Stanley, Ender Büyükgüzel
{"title":"膳食氧环扎腈会影响瘿蚊(鳞翅目:稚虫科)的抗氧化酶活性并破坏其 DNA。","authors":"Cihat Çelik, David Stanley, Ender Büyükgüzel","doi":"10.1093/ee/nvae070","DOIUrl":null,"url":null,"abstract":"<p><p>Oxyclozanide (OXY) is an anthelmintic widely used in the treatment of flatworm infection and fasciolosis. It also has antiadenovirus, antibiofilm, antifungal, and antibacterial activities. Various chemicals have been suggested as alternative chemicals in insect pest management. Here, the oxidative and genotoxic effects of OXY on 7th instars, pupae and adults of the model organism Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) were examined. First-instar larvae were reared on 0.003, 0.03, 0.3, and 1.5 g OXY per 100 g artificial diets. Compared with all tested OXY concentrations and controls without OXY, dietary OXY led to increased antioxidant capacity and genotoxic effects. Concentrations of malondialdehyde, an oxidative stress marker, were significantly increased in adults of larvae reared on OXY-charged diets at 0.3 and 1.5 g/100 g compared to the adult control group. We also recorded a significant increase in the genotoxic test data (Tail length, Tail DNA %, Tail moment) at the same stages and concentrations. We recorded significant increases in glutathione-S-transferase, superoxide dismutase (SOD) and glutathione peroxidase activities in larvae fed high OXY concentrations. SOD and catalase activities were also significantly increased at the concentration of 0.03 g/100 g of OXY in the pupal and adult stages. Cytochrome P450 monooxygenase activity was significantly increased at the highest concentration of OXY in the larval and pupal stages. Also, our regression analysis indicates a correlation between the markers of oxidative stress, antioxidant enzymes and comet parameters. These data indicate that OXY induces oxidative stress and antioxidative enzyme response.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":"789-800"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dietary oxyclozanide influences antioxidant enzyme activities and damages DNA in Galleria mellonella (Lepidoptera: Pyralidae).\",\"authors\":\"Cihat Çelik, David Stanley, Ender Büyükgüzel\",\"doi\":\"10.1093/ee/nvae070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxyclozanide (OXY) is an anthelmintic widely used in the treatment of flatworm infection and fasciolosis. It also has antiadenovirus, antibiofilm, antifungal, and antibacterial activities. Various chemicals have been suggested as alternative chemicals in insect pest management. Here, the oxidative and genotoxic effects of OXY on 7th instars, pupae and adults of the model organism Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) were examined. First-instar larvae were reared on 0.003, 0.03, 0.3, and 1.5 g OXY per 100 g artificial diets. Compared with all tested OXY concentrations and controls without OXY, dietary OXY led to increased antioxidant capacity and genotoxic effects. Concentrations of malondialdehyde, an oxidative stress marker, were significantly increased in adults of larvae reared on OXY-charged diets at 0.3 and 1.5 g/100 g compared to the adult control group. We also recorded a significant increase in the genotoxic test data (Tail length, Tail DNA %, Tail moment) at the same stages and concentrations. We recorded significant increases in glutathione-S-transferase, superoxide dismutase (SOD) and glutathione peroxidase activities in larvae fed high OXY concentrations. SOD and catalase activities were also significantly increased at the concentration of 0.03 g/100 g of OXY in the pupal and adult stages. Cytochrome P450 monooxygenase activity was significantly increased at the highest concentration of OXY in the larval and pupal stages. Also, our regression analysis indicates a correlation between the markers of oxidative stress, antioxidant enzymes and comet parameters. These data indicate that OXY induces oxidative stress and antioxidative enzyme response.</p>\",\"PeriodicalId\":11751,\"journal\":{\"name\":\"Environmental Entomology\",\"volume\":\" \",\"pages\":\"789-800\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/ee/nvae070\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/ee/nvae070","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Oxyclozanide (OXY) 是一种抗蠕虫药,广泛用于治疗扁形动物感染和筋膜炎。它还具有抗腺病毒、抗生物膜、抗真菌和抗菌活性。在昆虫害虫管理方面,有多种化学物质被建议用作替代化学品。在此,研究人员考察了 OXY 对模式生物 Galleria mellonella (Linnaeus) (鳞翅目:瘿蚊科)的七龄幼虫、蛹和成虫的氧化作用和基因毒性作用。每 100 克人工饲料中分别含有 0.003、0.03、0.3 和 1.5 克 OXY。与所有测试的 OXY 浓度和不含 OXY 的对照组相比,膳食 OXY 提高了抗氧化能力和基因毒性效应。与成体对照组相比,添加了氧化亚氮的 0.3 和 1.5 克/100 克日粮饲养的成体幼虫体内的丙二醛(一种氧化应激标志物)浓度显著增加。在相同阶段和浓度下,我们还记录到基因毒性测试数据(尾长、尾 DNA %、尾矩)的明显增加。在喂食高浓度 OXY 的幼虫中,我们发现谷胱甘肽-S-转移酶、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶的活性明显增加。在蛹和成虫阶段,当 OXY 的浓度为 0.03 克/100 克时,SOD 和过氧化氢酶的活性也会显著增加。幼虫和蛹的细胞色素 P450 单加氧酶活性在最高浓度的 OXY 诱导下明显增加。此外,我们的回归分析表明,氧化应激标记物、抗氧化酶和彗星参数之间存在相关性。这些数据表明,OXY 能诱导氧化应激和抗氧化酶反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dietary oxyclozanide influences antioxidant enzyme activities and damages DNA in Galleria mellonella (Lepidoptera: Pyralidae).

Oxyclozanide (OXY) is an anthelmintic widely used in the treatment of flatworm infection and fasciolosis. It also has antiadenovirus, antibiofilm, antifungal, and antibacterial activities. Various chemicals have been suggested as alternative chemicals in insect pest management. Here, the oxidative and genotoxic effects of OXY on 7th instars, pupae and adults of the model organism Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) were examined. First-instar larvae were reared on 0.003, 0.03, 0.3, and 1.5 g OXY per 100 g artificial diets. Compared with all tested OXY concentrations and controls without OXY, dietary OXY led to increased antioxidant capacity and genotoxic effects. Concentrations of malondialdehyde, an oxidative stress marker, were significantly increased in adults of larvae reared on OXY-charged diets at 0.3 and 1.5 g/100 g compared to the adult control group. We also recorded a significant increase in the genotoxic test data (Tail length, Tail DNA %, Tail moment) at the same stages and concentrations. We recorded significant increases in glutathione-S-transferase, superoxide dismutase (SOD) and glutathione peroxidase activities in larvae fed high OXY concentrations. SOD and catalase activities were also significantly increased at the concentration of 0.03 g/100 g of OXY in the pupal and adult stages. Cytochrome P450 monooxygenase activity was significantly increased at the highest concentration of OXY in the larval and pupal stages. Also, our regression analysis indicates a correlation between the markers of oxidative stress, antioxidant enzymes and comet parameters. These data indicate that OXY induces oxidative stress and antioxidative enzyme response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Entomology
Environmental Entomology 生物-昆虫学
CiteScore
3.90
自引率
5.90%
发文量
97
审稿时长
3-8 weeks
期刊介绍: Environmental Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes reports on the interaction of insects with the biological, chemical, and physical aspects of their environment. In addition to research papers, Environmental Entomology publishes Reviews, interpretive articles in a Forum section, and Letters to the Editor.
期刊最新文献
A review of non-microbial biological control strategies against the Asian longhorned beetle (Coleoptera: Cerambycidae). Addition of ammonium acetate to torula yeast borax and its effect on captures of three species of economically important fruit flies (Diptera: Tephritidae). Testing the efficacy of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) as a inundative biological control agent in Western Nebraska. Sex-ratio distortion in a weed biological control agent, Ceratapion basicorne (Coleoptera: Brentidae), associated with a species of Rickettsia. Catching invasives with curiosity: the importance of passive biosecurity surveillance systems for invasive forest pest detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1