Deepa B. Bailmare, Boris V. Malozyomov, Abhay D. Deshmukh
{"title":"用于高效电荷存储的多孔金属有机框架的电沉积。","authors":"Deepa B. Bailmare, Boris V. Malozyomov, Abhay D. Deshmukh","doi":"10.1038/s42004-024-01260-w","DOIUrl":null,"url":null,"abstract":"Efficient charge storage is a key requirement for a range of applications, including energy storage devices and catalysis. Metal-organic frameworks are potential materials for efficient charge storage due to their self-supported three-dimensional design. MOFs are high surface area materials made up of coordination of appropriate amounts of metal ions and organic linkers, hence used in various applications. Yet, creating an effective MOF nanostructure with reduced random crystal formation continues to be a difficult task. The energy efficiency and electrochemical yield of bulk electrodes are improved in this study by demonstrating an effective technique for growing MOFs over a conducting substrate utilizing electrodeposition. An exceptionally stable asymmetric supercapacitor is created when activated carbon cloth is combined with the resulting MOF structure that was directly synthesized via an electrochemical method resulting in 97% stability over 5k cycles which is higher than conventional processes. High performance in supercapacitors is ensured by this practical approach for producing MOF electrodes, making it a suitable structure for effective charge storage. Metal-organic frameworks (MOFs) are promising charge storage materials due to their high surface area, tunable pore size, and chemical diversity, but reliable and easy syntheses of MOF conductors are needed. Here, the authors report the electrodeposition synthesis of highly conductive cobalt MOF films and their application in a supercapacitor with a power density of 480 Wkg-1 and 5k cycle stability.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-11"},"PeriodicalIF":5.9000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01260-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrodeposition of porous metal-organic frameworks for efficient charge storage\",\"authors\":\"Deepa B. Bailmare, Boris V. Malozyomov, Abhay D. Deshmukh\",\"doi\":\"10.1038/s42004-024-01260-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient charge storage is a key requirement for a range of applications, including energy storage devices and catalysis. Metal-organic frameworks are potential materials for efficient charge storage due to their self-supported three-dimensional design. MOFs are high surface area materials made up of coordination of appropriate amounts of metal ions and organic linkers, hence used in various applications. Yet, creating an effective MOF nanostructure with reduced random crystal formation continues to be a difficult task. The energy efficiency and electrochemical yield of bulk electrodes are improved in this study by demonstrating an effective technique for growing MOFs over a conducting substrate utilizing electrodeposition. An exceptionally stable asymmetric supercapacitor is created when activated carbon cloth is combined with the resulting MOF structure that was directly synthesized via an electrochemical method resulting in 97% stability over 5k cycles which is higher than conventional processes. High performance in supercapacitors is ensured by this practical approach for producing MOF electrodes, making it a suitable structure for effective charge storage. Metal-organic frameworks (MOFs) are promising charge storage materials due to their high surface area, tunable pore size, and chemical diversity, but reliable and easy syntheses of MOF conductors are needed. Here, the authors report the electrodeposition synthesis of highly conductive cobalt MOF films and their application in a supercapacitor with a power density of 480 Wkg-1 and 5k cycle stability.\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42004-024-01260-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s42004-024-01260-w\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01260-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrodeposition of porous metal-organic frameworks for efficient charge storage
Efficient charge storage is a key requirement for a range of applications, including energy storage devices and catalysis. Metal-organic frameworks are potential materials for efficient charge storage due to their self-supported three-dimensional design. MOFs are high surface area materials made up of coordination of appropriate amounts of metal ions and organic linkers, hence used in various applications. Yet, creating an effective MOF nanostructure with reduced random crystal formation continues to be a difficult task. The energy efficiency and electrochemical yield of bulk electrodes are improved in this study by demonstrating an effective technique for growing MOFs over a conducting substrate utilizing electrodeposition. An exceptionally stable asymmetric supercapacitor is created when activated carbon cloth is combined with the resulting MOF structure that was directly synthesized via an electrochemical method resulting in 97% stability over 5k cycles which is higher than conventional processes. High performance in supercapacitors is ensured by this practical approach for producing MOF electrodes, making it a suitable structure for effective charge storage. Metal-organic frameworks (MOFs) are promising charge storage materials due to their high surface area, tunable pore size, and chemical diversity, but reliable and easy syntheses of MOF conductors are needed. Here, the authors report the electrodeposition synthesis of highly conductive cobalt MOF films and their application in a supercapacitor with a power density of 480 Wkg-1 and 5k cycle stability.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.