Victor Luzarraga, Julie Cremniter, Chloé Plouzeau, Anthony Michaud, Lauranne Broutin, Christophe Burucoa, Maxime Pichon
{"title":"德拉氧氟沙星对耐左氧氟沙星的临床幽门螺旋杆菌分离物的体外活性。","authors":"Victor Luzarraga, Julie Cremniter, Chloé Plouzeau, Anthony Michaud, Lauranne Broutin, Christophe Burucoa, Maxime Pichon","doi":"10.1093/jac/dkae269","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Increasing antibiotic resistance in Helicobacter pylori necessitates research on new active molecules. In 2017, delafloxacin, a new fluoroquinolone with chemical properties of activity under acidic conditions, was approved for treatment of community-acquired bacterial pneumonia and acute bacterial skin and soft-tissue infections. Mutations in gyrA are responsible for fluoroquinolone resistance, but certain clinical isolates of H. pylori appear to display a dual phenotype: resistance to levofloxacin associated with very low delafloxacin MICs.</p><p><strong>Objectives: </strong>To estimate epidemiological cut-off (ECOFF) values and to identify mutations in the gyrA gene, specific to FQ resistance, without increasing the MICs of delafloxacin.</p><p><strong>Methods: </strong>Clinical strains (n = 231) were collected in the bacteriology laboratory of Poitiers University Hospital over a 2 year period to determine the ECOFF of delafloxacin. Retrospectively, 101 clinical strains with an levofloxacin-resistant phenotype (MIC > 1 mg/L) were selected from 2018 to 2022 for delafloxacin MIC determination and QRDR (gyrA) sequencing.</p><p><strong>Results: </strong>The estimated ECOFF of delafloxacin was ≤0.125 mg/L. No H. pylori isolate showed a levofloxacin-sensitive phenotype with a delafloxacin MIC of >0.125 mg/L. Among the levofloxacin-resistant H. pylori isolates, 53.5% had delafloxacin MICs of ≤0.125 mg/L. The N87I mutation was associated with dual levofloxacin/delafloxacin resistance (P < 0.001) in contrast to the N87K and D91N mutations (P > 0.05). Mutations D91G and D91Y were not associated with a delafloxacin resistance phenotype (P > 0.05).</p><p><strong>Conclusions: </strong>Delafloxacin seems to be a therapeutic alternative for levofloxacin-resistant strains with greater in vitro activity. However, further clinical/biological investigations are required to determine its efficacy in H. pylori eradication.</p>","PeriodicalId":14969,"journal":{"name":"Journal of Antimicrobial Chemotherapy","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vitro activity of delafloxacin against clinical levofloxacin-resistant Helicobacter pylori isolates.\",\"authors\":\"Victor Luzarraga, Julie Cremniter, Chloé Plouzeau, Anthony Michaud, Lauranne Broutin, Christophe Burucoa, Maxime Pichon\",\"doi\":\"10.1093/jac/dkae269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Increasing antibiotic resistance in Helicobacter pylori necessitates research on new active molecules. In 2017, delafloxacin, a new fluoroquinolone with chemical properties of activity under acidic conditions, was approved for treatment of community-acquired bacterial pneumonia and acute bacterial skin and soft-tissue infections. Mutations in gyrA are responsible for fluoroquinolone resistance, but certain clinical isolates of H. pylori appear to display a dual phenotype: resistance to levofloxacin associated with very low delafloxacin MICs.</p><p><strong>Objectives: </strong>To estimate epidemiological cut-off (ECOFF) values and to identify mutations in the gyrA gene, specific to FQ resistance, without increasing the MICs of delafloxacin.</p><p><strong>Methods: </strong>Clinical strains (n = 231) were collected in the bacteriology laboratory of Poitiers University Hospital over a 2 year period to determine the ECOFF of delafloxacin. Retrospectively, 101 clinical strains with an levofloxacin-resistant phenotype (MIC > 1 mg/L) were selected from 2018 to 2022 for delafloxacin MIC determination and QRDR (gyrA) sequencing.</p><p><strong>Results: </strong>The estimated ECOFF of delafloxacin was ≤0.125 mg/L. No H. pylori isolate showed a levofloxacin-sensitive phenotype with a delafloxacin MIC of >0.125 mg/L. Among the levofloxacin-resistant H. pylori isolates, 53.5% had delafloxacin MICs of ≤0.125 mg/L. The N87I mutation was associated with dual levofloxacin/delafloxacin resistance (P < 0.001) in contrast to the N87K and D91N mutations (P > 0.05). Mutations D91G and D91Y were not associated with a delafloxacin resistance phenotype (P > 0.05).</p><p><strong>Conclusions: </strong>Delafloxacin seems to be a therapeutic alternative for levofloxacin-resistant strains with greater in vitro activity. However, further clinical/biological investigations are required to determine its efficacy in H. pylori eradication.</p>\",\"PeriodicalId\":14969,\"journal\":{\"name\":\"Journal of Antimicrobial Chemotherapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antimicrobial Chemotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jac/dkae269\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antimicrobial Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jac/dkae269","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
In vitro activity of delafloxacin against clinical levofloxacin-resistant Helicobacter pylori isolates.
Background: Increasing antibiotic resistance in Helicobacter pylori necessitates research on new active molecules. In 2017, delafloxacin, a new fluoroquinolone with chemical properties of activity under acidic conditions, was approved for treatment of community-acquired bacterial pneumonia and acute bacterial skin and soft-tissue infections. Mutations in gyrA are responsible for fluoroquinolone resistance, but certain clinical isolates of H. pylori appear to display a dual phenotype: resistance to levofloxacin associated with very low delafloxacin MICs.
Objectives: To estimate epidemiological cut-off (ECOFF) values and to identify mutations in the gyrA gene, specific to FQ resistance, without increasing the MICs of delafloxacin.
Methods: Clinical strains (n = 231) were collected in the bacteriology laboratory of Poitiers University Hospital over a 2 year period to determine the ECOFF of delafloxacin. Retrospectively, 101 clinical strains with an levofloxacin-resistant phenotype (MIC > 1 mg/L) were selected from 2018 to 2022 for delafloxacin MIC determination and QRDR (gyrA) sequencing.
Results: The estimated ECOFF of delafloxacin was ≤0.125 mg/L. No H. pylori isolate showed a levofloxacin-sensitive phenotype with a delafloxacin MIC of >0.125 mg/L. Among the levofloxacin-resistant H. pylori isolates, 53.5% had delafloxacin MICs of ≤0.125 mg/L. The N87I mutation was associated with dual levofloxacin/delafloxacin resistance (P < 0.001) in contrast to the N87K and D91N mutations (P > 0.05). Mutations D91G and D91Y were not associated with a delafloxacin resistance phenotype (P > 0.05).
Conclusions: Delafloxacin seems to be a therapeutic alternative for levofloxacin-resistant strains with greater in vitro activity. However, further clinical/biological investigations are required to determine its efficacy in H. pylori eradication.
期刊介绍:
The Journal publishes articles that further knowledge and advance the science and application of antimicrobial chemotherapy with antibiotics and antifungal, antiviral and antiprotozoal agents. The Journal publishes primarily in human medicine, and articles in veterinary medicine likely to have an impact on global health.