二氧化碳的微生物电合成达到合成气和链延伸发酵的生产率。

IF 14.3 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Trends in biotechnology Pub Date : 2024-11-01 Epub Date: 2024-08-08 DOI:10.1016/j.tibtech.2024.06.005
Oriol Cabau-Peinado, Marijn Winkelhorst, Rozanne Stroek, Roderick de Kat Angelino, Adrie J J Straathof, Kunal Masania, Jean Marc Daran, Ludovic Jourdin
{"title":"二氧化碳的微生物电合成达到合成气和链延伸发酵的生产率。","authors":"Oriol Cabau-Peinado, Marijn Winkelhorst, Rozanne Stroek, Roderick de Kat Angelino, Adrie J J Straathof, Kunal Masania, Jean Marc Daran, Ludovic Jourdin","doi":"10.1016/j.tibtech.2024.06.005","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon-based products are essential to society, yet producing them from fossil fuels is unsustainable. Microorganisms have the ability to take up electrons from solid electrodes and convert carbon dioxide (CO<sub>2</sub>) to valuable carbon-based chemicals. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here, we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO<sub>2</sub> to even-chain C2-C6 carboxylic acids over 248 days. We demonstrate a threefold higher biofilm concentration, volumetric current density, and productivity compared with the state of the art. Most notably, the volumetric productivity (VP) resembles those achieved in laboratory-scale and industrial syngas (CO-H<sub>2</sub>-CO<sub>2</sub>) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO<sub>2</sub> reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale up the technology.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial electrosynthesis from CO<sub>2</sub> reaches productivity of syngas and chain elongation fermentations.\",\"authors\":\"Oriol Cabau-Peinado, Marijn Winkelhorst, Rozanne Stroek, Roderick de Kat Angelino, Adrie J J Straathof, Kunal Masania, Jean Marc Daran, Ludovic Jourdin\",\"doi\":\"10.1016/j.tibtech.2024.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carbon-based products are essential to society, yet producing them from fossil fuels is unsustainable. Microorganisms have the ability to take up electrons from solid electrodes and convert carbon dioxide (CO<sub>2</sub>) to valuable carbon-based chemicals. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here, we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO<sub>2</sub> to even-chain C2-C6 carboxylic acids over 248 days. We demonstrate a threefold higher biofilm concentration, volumetric current density, and productivity compared with the state of the art. Most notably, the volumetric productivity (VP) resembles those achieved in laboratory-scale and industrial syngas (CO-H<sub>2</sub>-CO<sub>2</sub>) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO<sub>2</sub> reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale up the technology.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2024.06.005\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.06.005","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

碳基产品对社会至关重要,但用化石燃料生产碳基产品是不可持续的。微生物有能力从固体电极吸收电子,并将二氧化碳(CO2)转化为有价值的碳基化学品。然而,要达到使该技术发生变革的可行性,还需要更高的生产率和能效。在这里,我们展示了基于生物膜的微生物多孔阴极如何在一个定向流过式电化学系统中连续 248 天将二氧化碳还原成偶链 C2-C6 羧酸。与现有技术相比,我们证明生物膜浓度、体积电流密度和生产率均提高了三倍。最值得注意的是,体积生产率(VP)与实验室规模和工业合成气(CO-H2-CO2)发酵和链延伸发酵所达到的生产率相似。这项工作强调了高效电力驱动微生物二氧化碳还原的关键设计参数。目前仍有必要和空间来提高电极定植率和微生物特异性动力学,以扩大该技术的规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial electrosynthesis from CO2 reaches productivity of syngas and chain elongation fermentations.

Carbon-based products are essential to society, yet producing them from fossil fuels is unsustainable. Microorganisms have the ability to take up electrons from solid electrodes and convert carbon dioxide (CO2) to valuable carbon-based chemicals. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here, we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO2 to even-chain C2-C6 carboxylic acids over 248 days. We demonstrate a threefold higher biofilm concentration, volumetric current density, and productivity compared with the state of the art. Most notably, the volumetric productivity (VP) resembles those achieved in laboratory-scale and industrial syngas (CO-H2-CO2) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO2 reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale up the technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
期刊最新文献
A high-performance protein preparation approach in a single column-free step. Cas9-PE: a robust multiplex gene editing tool for simultaneous precise editing and site-specific random mutation in rice. Intracellularly synthesized ssDNA for continuous genome engineering. Rapid point-of-care pathogen sensing in the post-pandemic era. Revolutionizing IBD research with on-chip models of disease modeling and drug screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1