Xue-Mei Li, Hao-Dong Li, Yuan-Yuan Shao, Jin-Zi Ji, Ke Tang, Zhao-Dong Zheng, Yu Wu, Pei-Jie Ding, Jin Wang, Li-Ping Jiang, Ting Tai, Qiong-Yu Mi, Min Fu, Hong-Guang Xie
{"title":"在小鼠体内,P-糖蛋白缺乏(而非 P-糖蛋白抑制)会导致维卡格雷的代谢激活和血小板反应发生变化。","authors":"Xue-Mei Li, Hao-Dong Li, Yuan-Yuan Shao, Jin-Zi Ji, Ke Tang, Zhao-Dong Zheng, Yu Wu, Pei-Jie Ding, Jin Wang, Li-Ping Jiang, Ting Tai, Qiong-Yu Mi, Min Fu, Hong-Guang Xie","doi":"10.1080/00498254.2024.2390972","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to determine changes in the hydrolysis of vicagrel, a substrate drug of arylacetamide deacetylase (Aadac) and carboxylesterase 2 (Ces2), in P-glycoprotein (P-gp)-deficient or P-gp-inhibited mice and to elucidate the mechanisms involved.Male wild-type (WT) and P-gp knock-out (KO) mice were used to investigate the systemic exposure of vicagrel thiol active metabolite H4 and platelet response to vicagrel, and the mRNA and protein expression levels of intestinal Aadac and Ces2. Moreover, WT mice were administered vicagrel alone or in combination with elacridar (a potent P-gp inhibitor) to determine drug-drug interactions.Compared with WT mice, P-gp KO mice exhibited significant increases in the systemic exposure of H4, the protein expression levels of intestinal Aadac and Ces2, and inhibition of ADP-induced platelet aggregation by vicagrel. Further, the H4 exposure was positively correlated with intestinal Aadac protein expression levels but did not vary with short-term inhibition of P-gp efflux activity by elacridar.P-gp-deficient mice, rather than elacridar-treated mice, exhibited significant upregulation of intestinal Aadac and Ces2 and thus, enhanced metabolic activation of and platelet response to vicagrel, suggesting that the metabolic activation of vicagrel may vary with P-gp deficiency, not P-gp inhibition, in mice.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"759-769"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The metabolic activation of and platelet response to vicagrel vary with P-glycoprotein deficiency, rather than P-glycoprotein inhibition, in mice.\",\"authors\":\"Xue-Mei Li, Hao-Dong Li, Yuan-Yuan Shao, Jin-Zi Ji, Ke Tang, Zhao-Dong Zheng, Yu Wu, Pei-Jie Ding, Jin Wang, Li-Ping Jiang, Ting Tai, Qiong-Yu Mi, Min Fu, Hong-Guang Xie\",\"doi\":\"10.1080/00498254.2024.2390972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to determine changes in the hydrolysis of vicagrel, a substrate drug of arylacetamide deacetylase (Aadac) and carboxylesterase 2 (Ces2), in P-glycoprotein (P-gp)-deficient or P-gp-inhibited mice and to elucidate the mechanisms involved.Male wild-type (WT) and P-gp knock-out (KO) mice were used to investigate the systemic exposure of vicagrel thiol active metabolite H4 and platelet response to vicagrel, and the mRNA and protein expression levels of intestinal Aadac and Ces2. Moreover, WT mice were administered vicagrel alone or in combination with elacridar (a potent P-gp inhibitor) to determine drug-drug interactions.Compared with WT mice, P-gp KO mice exhibited significant increases in the systemic exposure of H4, the protein expression levels of intestinal Aadac and Ces2, and inhibition of ADP-induced platelet aggregation by vicagrel. Further, the H4 exposure was positively correlated with intestinal Aadac protein expression levels but did not vary with short-term inhibition of P-gp efflux activity by elacridar.P-gp-deficient mice, rather than elacridar-treated mice, exhibited significant upregulation of intestinal Aadac and Ces2 and thus, enhanced metabolic activation of and platelet response to vicagrel, suggesting that the metabolic activation of vicagrel may vary with P-gp deficiency, not P-gp inhibition, in mice.</p>\",\"PeriodicalId\":23812,\"journal\":{\"name\":\"Xenobiotica\",\"volume\":\" \",\"pages\":\"759-769\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Xenobiotica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00498254.2024.2390972\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2390972","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The metabolic activation of and platelet response to vicagrel vary with P-glycoprotein deficiency, rather than P-glycoprotein inhibition, in mice.
This study aimed to determine changes in the hydrolysis of vicagrel, a substrate drug of arylacetamide deacetylase (Aadac) and carboxylesterase 2 (Ces2), in P-glycoprotein (P-gp)-deficient or P-gp-inhibited mice and to elucidate the mechanisms involved.Male wild-type (WT) and P-gp knock-out (KO) mice were used to investigate the systemic exposure of vicagrel thiol active metabolite H4 and platelet response to vicagrel, and the mRNA and protein expression levels of intestinal Aadac and Ces2. Moreover, WT mice were administered vicagrel alone or in combination with elacridar (a potent P-gp inhibitor) to determine drug-drug interactions.Compared with WT mice, P-gp KO mice exhibited significant increases in the systemic exposure of H4, the protein expression levels of intestinal Aadac and Ces2, and inhibition of ADP-induced platelet aggregation by vicagrel. Further, the H4 exposure was positively correlated with intestinal Aadac protein expression levels but did not vary with short-term inhibition of P-gp efflux activity by elacridar.P-gp-deficient mice, rather than elacridar-treated mice, exhibited significant upregulation of intestinal Aadac and Ces2 and thus, enhanced metabolic activation of and platelet response to vicagrel, suggesting that the metabolic activation of vicagrel may vary with P-gp deficiency, not P-gp inhibition, in mice.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology