基于加权联合分布优化传输的跨场景人脸防欺骗领域自适应技术

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2024-08-11 DOI:10.1007/s11263-024-02178-5
Shiyun Mao, Ruolin Chen, Huibin Li
{"title":"基于加权联合分布优化传输的跨场景人脸防欺骗领域自适应技术","authors":"Shiyun Mao, Ruolin Chen, Huibin Li","doi":"10.1007/s11263-024-02178-5","DOIUrl":null,"url":null,"abstract":"<p>Unsupervised domain adaptation-based face anti-spoofing methods have attracted more and more attention due to their promising generalization abilities. To mitigate domain bias, existing methods generally attempt to align the marginal distributions of samples from source and target domains. However, the label and pseudo-label information of the samples from source and target domains are ignored. To solve this problem, this paper proposes a Weighted Joint Distribution Optimal Transport unsupervised multi-source domain adaptation method for cross-scenario face anti-spoofing (WJDOT-FAS). WJDOT-FAS consists of three modules: joint distribution estimation, joint distribution optimal transport, and domain weight optimization. Specifically, the joint distributions of the features and pseudo labels of multi-source and target domains are firstly estimated based on a pre-trained feature extractor and a randomly initialized classifier. Then, we compute the cost matrices and the optimal transportation mappings from the joint distributions related to each source domain and the target domain by solving Lp-L1 optimal transport problems. Finally, based on the loss functions of different source domains, the target domain, and the optimal transportation losses from each source domain to the target domain, we can estimate the weights of each source domain, and meanwhile, the parameters of the feature extractor and classifier are also updated. All the learnable parameters and the computations of the three modules are updated alternatively. Extensive experimental results on four widely used 2D attack datasets and three recently published 3D attack datasets under both single- and multi-source domain adaptation settings (including both close-set and open-set) show the advantages of our proposed method for cross-scenario face anti-spoofing.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"1 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Joint Distribution Optimal Transport Based Domain Adaptation for Cross-Scenario Face Anti-Spoofing\",\"authors\":\"Shiyun Mao, Ruolin Chen, Huibin Li\",\"doi\":\"10.1007/s11263-024-02178-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Unsupervised domain adaptation-based face anti-spoofing methods have attracted more and more attention due to their promising generalization abilities. To mitigate domain bias, existing methods generally attempt to align the marginal distributions of samples from source and target domains. However, the label and pseudo-label information of the samples from source and target domains are ignored. To solve this problem, this paper proposes a Weighted Joint Distribution Optimal Transport unsupervised multi-source domain adaptation method for cross-scenario face anti-spoofing (WJDOT-FAS). WJDOT-FAS consists of three modules: joint distribution estimation, joint distribution optimal transport, and domain weight optimization. Specifically, the joint distributions of the features and pseudo labels of multi-source and target domains are firstly estimated based on a pre-trained feature extractor and a randomly initialized classifier. Then, we compute the cost matrices and the optimal transportation mappings from the joint distributions related to each source domain and the target domain by solving Lp-L1 optimal transport problems. Finally, based on the loss functions of different source domains, the target domain, and the optimal transportation losses from each source domain to the target domain, we can estimate the weights of each source domain, and meanwhile, the parameters of the feature extractor and classifier are also updated. All the learnable parameters and the computations of the three modules are updated alternatively. Extensive experimental results on four widely used 2D attack datasets and three recently published 3D attack datasets under both single- and multi-source domain adaptation settings (including both close-set and open-set) show the advantages of our proposed method for cross-scenario face anti-spoofing.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02178-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02178-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于无监督域适应的人脸防欺骗方法因其良好的泛化能力而受到越来越多的关注。为了减轻域偏差,现有方法一般都尝试对齐源域和目标域样本的边际分布。然而,源域和目标域样本的标签和伪标签信息却被忽略了。为了解决这个问题,本文提出了一种用于跨场景人脸防欺骗的加权联合分布优化传输无监督多源域适应方法(WJDOT-FAS)。WJDOT-FAS 包括三个模块:联合分布估计、联合分布优化传输和域权重优化。具体来说,首先基于预训练的特征提取器和随机初始化的分类器,估计多源域和目标域的特征和伪标签的联合分布。然后,我们通过求解 Lp-L1 最佳传输问题,根据与每个源域和目标域相关的联合分布计算成本矩阵和最佳传输映射。最后,根据不同源域、目标域的损失函数,以及从每个源域到目标域的最优传输损失,我们可以估算出每个源域的权重,同时,特征提取器和分类器的参数也会随之更新。所有可学习的参数和三个模块的计算都是交替更新的。在单源域和多源域自适应设置(包括闭集和开集)下,对四个广泛使用的二维攻击数据集和三个最新发布的三维攻击数据集进行的大量实验结果表明了我们提出的方法在跨场景人脸防欺骗方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weighted Joint Distribution Optimal Transport Based Domain Adaptation for Cross-Scenario Face Anti-Spoofing

Unsupervised domain adaptation-based face anti-spoofing methods have attracted more and more attention due to their promising generalization abilities. To mitigate domain bias, existing methods generally attempt to align the marginal distributions of samples from source and target domains. However, the label and pseudo-label information of the samples from source and target domains are ignored. To solve this problem, this paper proposes a Weighted Joint Distribution Optimal Transport unsupervised multi-source domain adaptation method for cross-scenario face anti-spoofing (WJDOT-FAS). WJDOT-FAS consists of three modules: joint distribution estimation, joint distribution optimal transport, and domain weight optimization. Specifically, the joint distributions of the features and pseudo labels of multi-source and target domains are firstly estimated based on a pre-trained feature extractor and a randomly initialized classifier. Then, we compute the cost matrices and the optimal transportation mappings from the joint distributions related to each source domain and the target domain by solving Lp-L1 optimal transport problems. Finally, based on the loss functions of different source domains, the target domain, and the optimal transportation losses from each source domain to the target domain, we can estimate the weights of each source domain, and meanwhile, the parameters of the feature extractor and classifier are also updated. All the learnable parameters and the computations of the three modules are updated alternatively. Extensive experimental results on four widely used 2D attack datasets and three recently published 3D attack datasets under both single- and multi-source domain adaptation settings (including both close-set and open-set) show the advantages of our proposed method for cross-scenario face anti-spoofing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
Reliable Evaluation of Attribution Maps in CNNs: A Perturbation-Based Approach Transformer for Object Re-identification: A Survey One-Shot Generative Domain Adaptation in 3D GANs NAFT and SynthStab: A RAFT-Based Network and a Synthetic Dataset for Digital Video Stabilization CS-CoLBP: Cross-Scale Co-occurrence Local Binary Pattern for Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1