{"title":"基于三个设计因素--衰变热优化、缓冲区热极限提高和双层概念--提高深层地质处置库的处置效率","authors":"","doi":"10.1016/j.tust.2024.106017","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the enhancement of disposal efficiency for deep geological repositories (DGRs) based on three design factors: decay heat optimization, increased thermal limit of the buffer, and double-layer concept using coupled thermo-hydro-mechanical (THM) numerical simulations. Decay heat optimization is achieved by iteratively emplacing spent nuclear fuels having the maximum and minimum decay heat in a canister. Disposal areas can be reduced by 20 % to 40 % compared to the current reference disposal system in Korea (KRS<sup>+</sup>) in accordance with the combinations of the three design factors, alleviating challenges in site selection for the DGR. This study additionally identifies an optimal layer spacing of 500 m for the double-layer concept in the viewpoint of the buffer temperature, where thermal interaction between the upper and lower layers nearly disappears. However, determining the ultimate disposal and layer spacing requires engineering judgement, considering not only the thermal performance of the DGR but also various factors such as cost and difficulties of the construction and rock mass stability. DGRs designed with an increased thermal limit of the buffer poses a greater probability of rock mass failure around disposal tunnels and deposition holes due to elevated thermal stresses. Densely arranged heat sources for the DGRs with enhanced disposal efficiency lead to larger temperature increase even at the far-field scale, raising a possibility of thermally driven fracture shear activation with associated hydraulic, mechanical, and seismic changes.</p></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0886779824004358/pdfft?md5=01c897cb17e59a8ae60c6df3688ab25e&pid=1-s2.0-S0886779824004358-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancement of disposal efficiency for deep geological repositories based on three design factors − Decay heat optimization, increased thermal limit of the buffer and double-layer concept\",\"authors\":\"\",\"doi\":\"10.1016/j.tust.2024.106017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the enhancement of disposal efficiency for deep geological repositories (DGRs) based on three design factors: decay heat optimization, increased thermal limit of the buffer, and double-layer concept using coupled thermo-hydro-mechanical (THM) numerical simulations. Decay heat optimization is achieved by iteratively emplacing spent nuclear fuels having the maximum and minimum decay heat in a canister. Disposal areas can be reduced by 20 % to 40 % compared to the current reference disposal system in Korea (KRS<sup>+</sup>) in accordance with the combinations of the three design factors, alleviating challenges in site selection for the DGR. This study additionally identifies an optimal layer spacing of 500 m for the double-layer concept in the viewpoint of the buffer temperature, where thermal interaction between the upper and lower layers nearly disappears. However, determining the ultimate disposal and layer spacing requires engineering judgement, considering not only the thermal performance of the DGR but also various factors such as cost and difficulties of the construction and rock mass stability. DGRs designed with an increased thermal limit of the buffer poses a greater probability of rock mass failure around disposal tunnels and deposition holes due to elevated thermal stresses. Densely arranged heat sources for the DGRs with enhanced disposal efficiency lead to larger temperature increase even at the far-field scale, raising a possibility of thermally driven fracture shear activation with associated hydraulic, mechanical, and seismic changes.</p></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0886779824004358/pdfft?md5=01c897cb17e59a8ae60c6df3688ab25e&pid=1-s2.0-S0886779824004358-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0886779824004358\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779824004358","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Enhancement of disposal efficiency for deep geological repositories based on three design factors − Decay heat optimization, increased thermal limit of the buffer and double-layer concept
This study investigates the enhancement of disposal efficiency for deep geological repositories (DGRs) based on three design factors: decay heat optimization, increased thermal limit of the buffer, and double-layer concept using coupled thermo-hydro-mechanical (THM) numerical simulations. Decay heat optimization is achieved by iteratively emplacing spent nuclear fuels having the maximum and minimum decay heat in a canister. Disposal areas can be reduced by 20 % to 40 % compared to the current reference disposal system in Korea (KRS+) in accordance with the combinations of the three design factors, alleviating challenges in site selection for the DGR. This study additionally identifies an optimal layer spacing of 500 m for the double-layer concept in the viewpoint of the buffer temperature, where thermal interaction between the upper and lower layers nearly disappears. However, determining the ultimate disposal and layer spacing requires engineering judgement, considering not only the thermal performance of the DGR but also various factors such as cost and difficulties of the construction and rock mass stability. DGRs designed with an increased thermal limit of the buffer poses a greater probability of rock mass failure around disposal tunnels and deposition holes due to elevated thermal stresses. Densely arranged heat sources for the DGRs with enhanced disposal efficiency lead to larger temperature increase even at the far-field scale, raising a possibility of thermally driven fracture shear activation with associated hydraulic, mechanical, and seismic changes.
期刊介绍:
Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.