使用平均危险比计算非比例危险下的样本量。

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biometrical Journal Pub Date : 2024-08-12 DOI:10.1002/bimj.202300271
Ina Dormuth, Markus Pauly, Geraldine Rauch, Carolin Herrmann
{"title":"使用平均危险比计算非比例危险下的样本量。","authors":"Ina Dormuth,&nbsp;Markus Pauly,&nbsp;Geraldine Rauch,&nbsp;Carolin Herrmann","doi":"10.1002/bimj.202300271","DOIUrl":null,"url":null,"abstract":"<p>Many clinical trials assess time-to-event endpoints. To describe the difference between groups in terms of time to event, we often employ hazard ratios. However, the hazard ratio is only informative in the case of proportional hazards (PHs) over time. There exist many other effect measures that do not require PHs. One of them is the average hazard ratio (AHR). Its core idea is to utilize a time-dependent weighting function that accounts for time variation. Though propagated in methodological research papers, the AHR is rarely used in practice. To facilitate its application, we unfold approaches for sample size calculation of an AHR test. We assess the reliability of the sample size calculation by extensive simulation studies covering various survival and censoring distributions with proportional as well as nonproportional hazards (N-PHs). The findings suggest that a simulation-based sample size calculation approach can be useful for designing clinical trials with N-PHs. Using the AHR can result in increased statistical power to detect differences between groups with more efficient sample sizes.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300271","citationCount":"0","resultStr":"{\"title\":\"Sample Size Calculation Under Nonproportional Hazards Using Average Hazard Ratios\",\"authors\":\"Ina Dormuth,&nbsp;Markus Pauly,&nbsp;Geraldine Rauch,&nbsp;Carolin Herrmann\",\"doi\":\"10.1002/bimj.202300271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many clinical trials assess time-to-event endpoints. To describe the difference between groups in terms of time to event, we often employ hazard ratios. However, the hazard ratio is only informative in the case of proportional hazards (PHs) over time. There exist many other effect measures that do not require PHs. One of them is the average hazard ratio (AHR). Its core idea is to utilize a time-dependent weighting function that accounts for time variation. Though propagated in methodological research papers, the AHR is rarely used in practice. To facilitate its application, we unfold approaches for sample size calculation of an AHR test. We assess the reliability of the sample size calculation by extensive simulation studies covering various survival and censoring distributions with proportional as well as nonproportional hazards (N-PHs). The findings suggest that a simulation-based sample size calculation approach can be useful for designing clinical trials with N-PHs. Using the AHR can result in increased statistical power to detect differences between groups with more efficient sample sizes.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 6\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300271\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300271\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300271","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

许多临床试验都会评估从时间到事件的终点。为了描述不同组别在事件发生时间上的差异,我们通常采用危险比。然而,危害比只有在时间比例危害(PHs)的情况下才有参考价值。还有许多其他不需要 PH 的效应测量方法。平均危险比(AHR)就是其中之一。其核心理念是利用随时间变化的加权函数来考虑时间变化。虽然 AHR 在方法论研究论文中广为传播,但在实践中却很少使用。为了便于应用,我们展开了 AHR 检验的样本量计算方法。我们通过广泛的模拟研究评估了样本量计算的可靠性,这些模拟研究涵盖了各种生存和剔除分布,以及比例和非比例危害(N-PHs)。研究结果表明,基于模拟的样本量计算方法可用于设计 N-PHs 临床试验。使用 AHR 可以提高统计能力,以更有效的样本量发现组间差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sample Size Calculation Under Nonproportional Hazards Using Average Hazard Ratios

Many clinical trials assess time-to-event endpoints. To describe the difference between groups in terms of time to event, we often employ hazard ratios. However, the hazard ratio is only informative in the case of proportional hazards (PHs) over time. There exist many other effect measures that do not require PHs. One of them is the average hazard ratio (AHR). Its core idea is to utilize a time-dependent weighting function that accounts for time variation. Though propagated in methodological research papers, the AHR is rarely used in practice. To facilitate its application, we unfold approaches for sample size calculation of an AHR test. We assess the reliability of the sample size calculation by extensive simulation studies covering various survival and censoring distributions with proportional as well as nonproportional hazards (N-PHs). The findings suggest that a simulation-based sample size calculation approach can be useful for designing clinical trials with N-PHs. Using the AHR can result in increased statistical power to detect differences between groups with more efficient sample sizes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
期刊最新文献
Survivor Average Causal Effects for Continuous Time: A Principal Stratification Approach to Causal Inference With Semicompeting Risks Wavelet-Mixed Landmark Survival Models for the Effect of Short-Term Changes of Potassium in Heart Failure Patients Issue Information: Biometrical Journal 2'25 Parametric Estimation of the Mean Number of Events in the Presence of Competing Risks Unscaled Indices for Assessing Agreement of Functional Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1