通过单原子纳米酶的原子对工程提高过氧化物酶样活性

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-08-12 DOI:10.1038/s41467-024-51022-4
Shengjie Wei, Wenjie Ma, Minmin Sun, Pan Xiang, Ziqi Tian, Lanqun Mao, Lizeng Gao, Yadong Li
{"title":"通过单原子纳米酶的原子对工程提高过氧化物酶样活性","authors":"Shengjie Wei, Wenjie Ma, Minmin Sun, Pan Xiang, Ziqi Tian, Lanqun Mao, Lizeng Gao, Yadong Li","doi":"10.1038/s41467-024-51022-4","DOIUrl":null,"url":null,"abstract":"<p>Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N<sub>4</sub> sites as catalytic sites and Zn-N<sub>4</sub>Cl<sub>1</sub> sites as catalytic regulator. The Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulators effectively boost the peroxidase-like activities of Zn-N<sub>4</sub> catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulators facilitate the adsorption of <sup>*</sup>H<sub>2</sub>O<sub>2</sub> and re-exposure of Zn-N<sub>4</sub> catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity\",\"authors\":\"Shengjie Wei, Wenjie Ma, Minmin Sun, Pan Xiang, Ziqi Tian, Lanqun Mao, Lizeng Gao, Yadong Li\",\"doi\":\"10.1038/s41467-024-51022-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N<sub>4</sub> sites as catalytic sites and Zn-N<sub>4</sub>Cl<sub>1</sub> sites as catalytic regulator. The Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulators effectively boost the peroxidase-like activities of Zn-N<sub>4</sub> catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N<sub>4</sub>Cl<sub>1</sub> catalytic regulators facilitate the adsorption of <sup>*</sup>H<sub>2</sub>O<sub>2</sub> and re-exposure of Zn-N<sub>4</sub> catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-51022-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51022-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

构建原子对工程并提高金属单原子纳米酶(SAzyme)的活性意义重大,但极具挑战性。在此,我们设计了Zn-SA/CNCl SAzyme的原子对工程,同时构建了Zn-N4位点作为催化位点和Zn-N4Cl1位点作为催化调节剂。与不含 Zn-N4Cl1 催化调节剂的 Zn-SA/CN SAzyme 相比,Zn-N4 催化位点的过氧化物酶样活性得到了有效提高,最大反应速度、催化常数和催化效率分别提高了 346 倍、1496 倍和 133 倍。Zn-SA/CNCl SAzyme 具有优异的过氧化物酶样活性,能有效抑制肿瘤细胞在体外和体内的生长。密度泛函理论(DFT)计算表明,Zn-N4Cl1催化调节剂有利于*H2O2的吸附和Zn-N4催化位点的再暴露,从而提高了反应速率。这项工作为通过原子对工程改善金属 SAzyme 的过氧化物酶样活性提供了一种合理有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity

Constructing atom-pair engineering and improving the activity of metal single-atom nanozyme (SAzyme) is significant but challenging. Herein, we design the atom-pair engineering of Zn-SA/CNCl SAzyme by simultaneously constructing Zn-N4 sites as catalytic sites and Zn-N4Cl1 sites as catalytic regulator. The Zn-N4Cl1 catalytic regulators effectively boost the peroxidase-like activities of Zn-N4 catalytic sites, resulting in a 346-fold, 1496-fold, and 133-fold increase in the maximal reaction velocity, the catalytic constant and the catalytic efficiency, compared to Zn-SA/CN SAzyme without the Zn-N4Cl1 catalytic regulator. The Zn-SA/CNCl SAzyme with excellent peroxidase-like activity effectively inhibits tumor cell growth in vitro and in vivo. The density functional theory (DFT) calculations reveal that the Zn-N4Cl1 catalytic regulators facilitate the adsorption of *H2O2 and re-exposure of Zn-N4 catalytic sites, and thus improve the reaction rate. This work provides a rational and effective strategy for improving the peroxidase-like activity of metal SAzyme by atom-pair engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Mechanically Tunable, Compostable, Healable and Scalable Engineered Living Materials ReaL-MGE is a tool for enhanced multiplex genome engineering and application to malonyl-CoA anabolism Laboratory validation of a clinical metagenomic next-generation sequencing assay for respiratory virus detection and discovery Evidence for the acclimation of ecosystem photosynthesis to soil moisture Shareable artificial intelligence to extract cancer outcomes from electronic health records for precision oncology research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1