{"title":"预应力混凝土连续梁的弯矩再分布能力","authors":"Da Luo, Bing Li","doi":"10.1680/jmacr.24.00138","DOIUrl":null,"url":null,"abstract":"In prestressed concrete continuous beams, building code provisions often allow for a reduction in the moment at a critical section (calculated through elastic analysis). This reduction is permitted as long as the moments in all other sections are adjusted to maintain equilibrium and support the designated loads. However, the allowable moment redistribution percentage (MRP) for prestressed concrete beams (PCBs) remains a topic of debate. Many codes currently assign a similar MRP limitation to both PCBs and reinforced concrete members. This approach might be over-simplistic for PCBs due to their unique behaviour. This paper proposes a method for identifying the maximum available MRP. An in-depth study was conducted on the maximum available MRP of PCBs based on calibrated finite element models. The results show that the parameters such as passive reinforcement ratio, steel yield strength, slenderness ratio, eccentricity of prestressing tendons, concrete grade, and load pattern, which were not considered in the codes, influence the maximum available MRP to an extent. Using the same permissible MRP as reinforced concrete beams may be inappropriate. Finally, an equation is proposed to estimate the maximum available MRP for PCBs.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moment redistribution capacity in prestressed concrete continuous beams\",\"authors\":\"Da Luo, Bing Li\",\"doi\":\"10.1680/jmacr.24.00138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In prestressed concrete continuous beams, building code provisions often allow for a reduction in the moment at a critical section (calculated through elastic analysis). This reduction is permitted as long as the moments in all other sections are adjusted to maintain equilibrium and support the designated loads. However, the allowable moment redistribution percentage (MRP) for prestressed concrete beams (PCBs) remains a topic of debate. Many codes currently assign a similar MRP limitation to both PCBs and reinforced concrete members. This approach might be over-simplistic for PCBs due to their unique behaviour. This paper proposes a method for identifying the maximum available MRP. An in-depth study was conducted on the maximum available MRP of PCBs based on calibrated finite element models. The results show that the parameters such as passive reinforcement ratio, steel yield strength, slenderness ratio, eccentricity of prestressing tendons, concrete grade, and load pattern, which were not considered in the codes, influence the maximum available MRP to an extent. Using the same permissible MRP as reinforced concrete beams may be inappropriate. Finally, an equation is proposed to estimate the maximum available MRP for PCBs.\",\"PeriodicalId\":18113,\"journal\":{\"name\":\"Magazine of Concrete Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magazine of Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jmacr.24.00138\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.24.00138","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Moment redistribution capacity in prestressed concrete continuous beams
In prestressed concrete continuous beams, building code provisions often allow for a reduction in the moment at a critical section (calculated through elastic analysis). This reduction is permitted as long as the moments in all other sections are adjusted to maintain equilibrium and support the designated loads. However, the allowable moment redistribution percentage (MRP) for prestressed concrete beams (PCBs) remains a topic of debate. Many codes currently assign a similar MRP limitation to both PCBs and reinforced concrete members. This approach might be over-simplistic for PCBs due to their unique behaviour. This paper proposes a method for identifying the maximum available MRP. An in-depth study was conducted on the maximum available MRP of PCBs based on calibrated finite element models. The results show that the parameters such as passive reinforcement ratio, steel yield strength, slenderness ratio, eccentricity of prestressing tendons, concrete grade, and load pattern, which were not considered in the codes, influence the maximum available MRP to an extent. Using the same permissible MRP as reinforced concrete beams may be inappropriate. Finally, an equation is proposed to estimate the maximum available MRP for PCBs.
期刊介绍:
For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed.
Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.