箱式风扇分翼倾转旋翼 eVTOL 飞机的概念设计与分析

IF 1.2 4区 工程技术 Q3 ENGINEERING, AEROSPACE Aircraft Engineering and Aerospace Technology Pub Date : 2024-08-12 DOI:10.1108/aeat-06-2023-0167
Yukei Oyama, Mohsen Rostami, Joon Chung
{"title":"箱式风扇分翼倾转旋翼 eVTOL 飞机的概念设计与分析","authors":"Yukei Oyama, Mohsen Rostami, Joon Chung","doi":"10.1108/aeat-06-2023-0167","DOIUrl":null,"url":null,"abstract":"\nPurpose\nWith the advancements in electric vertical take-off and landing (eVTOL) aircraft technology such as batteries, mechanisms, motors, configurations and so on, designers and engineers are encouraged to create unique and unconventional configurations of eVTOL aircraft to provide better capabilities and higher efficiencies to compete in the market. The box fan-in-split-wing tiltrotor eVTOL aircraft is an innovative design that aims to address the aerodynamic inefficiencies such as propeller effects in cruise and engine mounts drag that existed in traditional eVTOL aircraft designs such as vectored thrust, rotorcraft, lift + cruise and multi-copter configurations. This paper aims to propose a multi-disciplinary design process to conceptually design the box fan-in-split-wing Tiltrotor eVTOL aircraft.\n\n\nDesign/methodology/approach\nAn unconventional methodology was used to design the UAM aircraft, and the following parameters are considered: capable of vertical take-off and landing, highly aerodynamic with a high lift-to-drag ratio, low Cd0 modern and appealing, rechargeable or battery swappable and feature to minimise or negate propeller drag. A heavy emphasis on improving performance and weight based on aerodynamics was enforced during the conceptual design phase. MAPLA and XFOIL were used to identify the aerodynamic properties of the aircraft.\n\n\nFindings\nUpon determining the key parameters and the mission requirements and objectives, a list of possible VTOL configurations was derived from theoretical and existing designs. The fan in the wing/split wing was selected, as it could stow the propellers. A tiltrotor configuration was selected because of its ability to reduce the total number of lift props/motors, reducing powerplant weight and improving aerodynamic efficiency. For the propulsion configuration, a battery–motor configuration with a hexa-rotor layout was chosen because of its ability to complement the planform of the aircraft, providing redundant motors in case of failure and because of its reliability, efficiency and lack of emissions. Coupled with the fan-in-wing / split wing concept, the box wing seamlessly combines all chosen configurations.\n\n\nOriginality/value\nThe box fan-in-split-wing Tiltrotor eVTOL aircraft aims to address the aerodynamic inefficiencies of earlier designs such as propeller effects in cruise and engine mounts drag. The potential benefits of this aircraft, such as increased range, endurance and payload capacity, make it an exciting prospect in the field of Urban Air Mobility.\n","PeriodicalId":55540,"journal":{"name":"Aircraft Engineering and Aerospace Technology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conceptual design and analysis of a box fan-in-split-wing tiltrotor eVTOL aircraft\",\"authors\":\"Yukei Oyama, Mohsen Rostami, Joon Chung\",\"doi\":\"10.1108/aeat-06-2023-0167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nWith the advancements in electric vertical take-off and landing (eVTOL) aircraft technology such as batteries, mechanisms, motors, configurations and so on, designers and engineers are encouraged to create unique and unconventional configurations of eVTOL aircraft to provide better capabilities and higher efficiencies to compete in the market. The box fan-in-split-wing tiltrotor eVTOL aircraft is an innovative design that aims to address the aerodynamic inefficiencies such as propeller effects in cruise and engine mounts drag that existed in traditional eVTOL aircraft designs such as vectored thrust, rotorcraft, lift + cruise and multi-copter configurations. This paper aims to propose a multi-disciplinary design process to conceptually design the box fan-in-split-wing Tiltrotor eVTOL aircraft.\\n\\n\\nDesign/methodology/approach\\nAn unconventional methodology was used to design the UAM aircraft, and the following parameters are considered: capable of vertical take-off and landing, highly aerodynamic with a high lift-to-drag ratio, low Cd0 modern and appealing, rechargeable or battery swappable and feature to minimise or negate propeller drag. A heavy emphasis on improving performance and weight based on aerodynamics was enforced during the conceptual design phase. MAPLA and XFOIL were used to identify the aerodynamic properties of the aircraft.\\n\\n\\nFindings\\nUpon determining the key parameters and the mission requirements and objectives, a list of possible VTOL configurations was derived from theoretical and existing designs. The fan in the wing/split wing was selected, as it could stow the propellers. A tiltrotor configuration was selected because of its ability to reduce the total number of lift props/motors, reducing powerplant weight and improving aerodynamic efficiency. For the propulsion configuration, a battery–motor configuration with a hexa-rotor layout was chosen because of its ability to complement the planform of the aircraft, providing redundant motors in case of failure and because of its reliability, efficiency and lack of emissions. Coupled with the fan-in-wing / split wing concept, the box wing seamlessly combines all chosen configurations.\\n\\n\\nOriginality/value\\nThe box fan-in-split-wing Tiltrotor eVTOL aircraft aims to address the aerodynamic inefficiencies of earlier designs such as propeller effects in cruise and engine mounts drag. The potential benefits of this aircraft, such as increased range, endurance and payload capacity, make it an exciting prospect in the field of Urban Air Mobility.\\n\",\"PeriodicalId\":55540,\"journal\":{\"name\":\"Aircraft Engineering and Aerospace Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aircraft Engineering and Aerospace Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/aeat-06-2023-0167\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aircraft Engineering and Aerospace Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/aeat-06-2023-0167","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

目的随着电动垂直起降(eVTOL)飞机技术的进步,如电池、机构、发动机、构型等,鼓励设计师和工程师创造独特和非传统构型的 eVTOL 飞机,以提供更好的性能和更高的效率来参与市场竞争。箱式扇中分翼倾转旋翼 eVTOL 飞机是一种创新设计,旨在解决传统 eVTOL 飞机设计(如定向推力、旋翼机、升力 + 巡航和多旋翼配置)中存在的气动效率低下问题,如巡航中的螺旋桨效应和发动机悬置阻力。本文旨在提出一种多学科设计流程,从概念上设计箱式风扇内分翼倾转旋翼 eVTOL 飞机。设计/方法/途径在设计 UAM 飞机时采用了一种非常规方法,并考虑了以下参数:能够垂直起降、具有高升阻比的高气动性、低 Cd0 的现代性和吸引力、可充电或可更换电池,以及最大限度地减少或消除螺旋桨阻力。在概念设计阶段,重点强调在空气动力学的基础上提高性能和减轻重量。在确定关键参数以及任务要求和目标后,从理论和现有设计中得出了一份可能的 VTOL 配置清单。由于机翼/分翼中的风扇可以收纳螺旋桨,因此被选中。之所以选择倾转翼配置,是因为它能够减少升力螺旋桨/发动机的总数,减轻动力装置的重量,提高气动效率。在推进器配置方面,选择了六旋翼布局的电池-电机配置,因为它能够与飞机的平面形状相辅相成,在出现故障时提供冗余电机,而且可靠、高效、无排放。原创性/价值箱式扇中分翼倾转旋翼 eVTOL 飞机旨在解决早期设计中空气动力效率低下的问题,如巡航中的螺旋桨效应和发动机悬置阻力。这种飞机的潜在优势,如增加航程、续航时间和有效载荷能力,使其在城市空中机动领域具有令人振奋的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conceptual design and analysis of a box fan-in-split-wing tiltrotor eVTOL aircraft
Purpose With the advancements in electric vertical take-off and landing (eVTOL) aircraft technology such as batteries, mechanisms, motors, configurations and so on, designers and engineers are encouraged to create unique and unconventional configurations of eVTOL aircraft to provide better capabilities and higher efficiencies to compete in the market. The box fan-in-split-wing tiltrotor eVTOL aircraft is an innovative design that aims to address the aerodynamic inefficiencies such as propeller effects in cruise and engine mounts drag that existed in traditional eVTOL aircraft designs such as vectored thrust, rotorcraft, lift + cruise and multi-copter configurations. This paper aims to propose a multi-disciplinary design process to conceptually design the box fan-in-split-wing Tiltrotor eVTOL aircraft. Design/methodology/approach An unconventional methodology was used to design the UAM aircraft, and the following parameters are considered: capable of vertical take-off and landing, highly aerodynamic with a high lift-to-drag ratio, low Cd0 modern and appealing, rechargeable or battery swappable and feature to minimise or negate propeller drag. A heavy emphasis on improving performance and weight based on aerodynamics was enforced during the conceptual design phase. MAPLA and XFOIL were used to identify the aerodynamic properties of the aircraft. Findings Upon determining the key parameters and the mission requirements and objectives, a list of possible VTOL configurations was derived from theoretical and existing designs. The fan in the wing/split wing was selected, as it could stow the propellers. A tiltrotor configuration was selected because of its ability to reduce the total number of lift props/motors, reducing powerplant weight and improving aerodynamic efficiency. For the propulsion configuration, a battery–motor configuration with a hexa-rotor layout was chosen because of its ability to complement the planform of the aircraft, providing redundant motors in case of failure and because of its reliability, efficiency and lack of emissions. Coupled with the fan-in-wing / split wing concept, the box wing seamlessly combines all chosen configurations. Originality/value The box fan-in-split-wing Tiltrotor eVTOL aircraft aims to address the aerodynamic inefficiencies of earlier designs such as propeller effects in cruise and engine mounts drag. The potential benefits of this aircraft, such as increased range, endurance and payload capacity, make it an exciting prospect in the field of Urban Air Mobility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aircraft Engineering and Aerospace Technology
Aircraft Engineering and Aerospace Technology 工程技术-工程:宇航
CiteScore
3.20
自引率
13.30%
发文量
168
审稿时长
8 months
期刊介绍: Aircraft Engineering and Aerospace Technology provides a broad coverage of the materials and techniques employed in the aircraft and aerospace industry. Its international perspectives allow readers to keep up to date with current thinking and developments in critical areas such as coping with increasingly overcrowded airways, the development of new materials, recent breakthroughs in navigation technology - and more.
期刊最新文献
Wind tunnel investigation of hemispherical forebody interaction on the drag coefficient of a D-shaped model Parameter tuning for active disturbance rejection control of fixed-wing UAV based on improved bald eagle search algorithm Integrating urban air mobility into smart cities: a proposal for relevant use cases in the next decades Heavy fuel preparation effects on the operation of a spark ignition unmanned aerial vehicle engine Flame stabilization and emission reduction: a comprehensive study on the influence of swirl velocity in hydrogen fuel-based burner design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1