{"title":"探测器噪声对压缩采样单像素成像的影响","authors":"Denis Sych","doi":"10.1007/s10946-024-10213-6","DOIUrl":null,"url":null,"abstract":"<div><p>Single-pixel imaging allows to obtain images without the use of photosensors with spatial resolution. In this method, an image is calculated by measuring the image conformity to a given set of light patterns by a single-pixel detector. However, when implementing single-pixel imaging in practice, one has to deal with various imperfections, which lead to the difference between the experiment and the idealized theoretical model. In this work, we analyze the effect of detector noise on the ability to compute an image using a compressed sampling algorithm. By conducting computer simulations of single-pixel imaging, we investigate methods for suppressing the effects of detector noise and find optimum parameters of the measurement process. As a result, we demonstrate the ability to obtain images with a realistic model of the detector noise.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Detector Noise on Compressed Sampling Single-Pixel Imaging\",\"authors\":\"Denis Sych\",\"doi\":\"10.1007/s10946-024-10213-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Single-pixel imaging allows to obtain images without the use of photosensors with spatial resolution. In this method, an image is calculated by measuring the image conformity to a given set of light patterns by a single-pixel detector. However, when implementing single-pixel imaging in practice, one has to deal with various imperfections, which lead to the difference between the experiment and the idealized theoretical model. In this work, we analyze the effect of detector noise on the ability to compute an image using a compressed sampling algorithm. By conducting computer simulations of single-pixel imaging, we investigate methods for suppressing the effects of detector noise and find optimum parameters of the measurement process. As a result, we demonstrate the ability to obtain images with a realistic model of the detector noise.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10946-024-10213-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-024-10213-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of Detector Noise on Compressed Sampling Single-Pixel Imaging
Single-pixel imaging allows to obtain images without the use of photosensors with spatial resolution. In this method, an image is calculated by measuring the image conformity to a given set of light patterns by a single-pixel detector. However, when implementing single-pixel imaging in practice, one has to deal with various imperfections, which lead to the difference between the experiment and the idealized theoretical model. In this work, we analyze the effect of detector noise on the ability to compute an image using a compressed sampling algorithm. By conducting computer simulations of single-pixel imaging, we investigate methods for suppressing the effects of detector noise and find optimum parameters of the measurement process. As a result, we demonstrate the ability to obtain images with a realistic model of the detector noise.