用于可再生微电网渗透的输电扩建规划的瓦瑟斯坦分布稳健模型

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Generation Transmission & Distribution Pub Date : 2024-08-10 DOI:10.1049/gtd2.13229
Sahar Rahim, Zhen Wang, Ke Sun, Hangcheng Chen
{"title":"用于可再生微电网渗透的输电扩建规划的瓦瑟斯坦分布稳健模型","authors":"Sahar Rahim,&nbsp;Zhen Wang,&nbsp;Ke Sun,&nbsp;Hangcheng Chen","doi":"10.1049/gtd2.13229","DOIUrl":null,"url":null,"abstract":"<p>This article introduces a Wasserstein distance-based distributionally robust optimization model to address the transmission expansion planning considering renewable-based microgrids (MGs) under the impact of uncertainties. The primary objective of the presented methodology is to devise a robust expansion strategy that accounts for both long-term uncertainty and short-term variability over the planning horizon from the perspective of a central planner. In this framework, the central planner fosters the construction of appropriate transmission lines and the deployment of optimal MG-based generating units among profit-driven private investors. The Wasserstein distance uncertainty set is used to characterize the long-term uncertainty associated with future load demand. Short-term uncertainties, stemming from variations in load demands and production levels of stochastic units, are modeled through operating conditions. To ensure the tractability of the proposed planning model, the authors introduce a decomposition framework embedded with a modified application of Bender's method. To validate the efficiency and highlight the potential benefits of the proposed expansion planning methodology, two case studies based on simplified IEEE 6-bus and IEEE 118-bus systems are included. These case studies assess the effectiveness of the presented approach, its ability to navigate uncertainties, and its capacity to effectively optimize expansion decisions.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13229","citationCount":"0","resultStr":"{\"title\":\"A Wasserstein distributionally robust model for transmission expansion planning with renewable-based microgrid penetration\",\"authors\":\"Sahar Rahim,&nbsp;Zhen Wang,&nbsp;Ke Sun,&nbsp;Hangcheng Chen\",\"doi\":\"10.1049/gtd2.13229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article introduces a Wasserstein distance-based distributionally robust optimization model to address the transmission expansion planning considering renewable-based microgrids (MGs) under the impact of uncertainties. The primary objective of the presented methodology is to devise a robust expansion strategy that accounts for both long-term uncertainty and short-term variability over the planning horizon from the perspective of a central planner. In this framework, the central planner fosters the construction of appropriate transmission lines and the deployment of optimal MG-based generating units among profit-driven private investors. The Wasserstein distance uncertainty set is used to characterize the long-term uncertainty associated with future load demand. Short-term uncertainties, stemming from variations in load demands and production levels of stochastic units, are modeled through operating conditions. To ensure the tractability of the proposed planning model, the authors introduce a decomposition framework embedded with a modified application of Bender's method. To validate the efficiency and highlight the potential benefits of the proposed expansion planning methodology, two case studies based on simplified IEEE 6-bus and IEEE 118-bus systems are included. These case studies assess the effectiveness of the presented approach, its ability to navigate uncertainties, and its capacity to effectively optimize expansion decisions.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13229\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13229\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13229","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于 Wasserstein 距离的分布式鲁棒优化模型,用于解决不确定性影响下基于可再生能源的微电网(MGs)的输电扩容规划问题。所介绍方法的主要目标是,从中央规划者的角度出发,设计一种既能考虑长期不确定性,又能考虑规划期内短期可变性的稳健扩容策略。在这一框架中,中央规划者促进建设适当的输电线路,并在以利润为导向的私人投资者中部署基于 MG 的最佳发电机组。Wasserstein 距离不确定性集用于描述与未来负荷需求相关的长期不确定性。由负荷需求变化和随机机组生产水平引起的短期不确定性则通过运行条件来模拟。为确保拟议规划模型的可操作性,作者引入了一个分解框架,并嵌入了本德尔方法的修改应用。为了验证拟议扩展规划方法的效率并突出其潜在优势,作者在简化的 IEEE 6 总线和 IEEE 118 总线系统的基础上进行了两个案例研究。这些案例研究评估了所提出方法的有效性、驾驭不确定性的能力以及有效优化扩展决策的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Wasserstein distributionally robust model for transmission expansion planning with renewable-based microgrid penetration

This article introduces a Wasserstein distance-based distributionally robust optimization model to address the transmission expansion planning considering renewable-based microgrids (MGs) under the impact of uncertainties. The primary objective of the presented methodology is to devise a robust expansion strategy that accounts for both long-term uncertainty and short-term variability over the planning horizon from the perspective of a central planner. In this framework, the central planner fosters the construction of appropriate transmission lines and the deployment of optimal MG-based generating units among profit-driven private investors. The Wasserstein distance uncertainty set is used to characterize the long-term uncertainty associated with future load demand. Short-term uncertainties, stemming from variations in load demands and production levels of stochastic units, are modeled through operating conditions. To ensure the tractability of the proposed planning model, the authors introduce a decomposition framework embedded with a modified application of Bender's method. To validate the efficiency and highlight the potential benefits of the proposed expansion planning methodology, two case studies based on simplified IEEE 6-bus and IEEE 118-bus systems are included. These case studies assess the effectiveness of the presented approach, its ability to navigate uncertainties, and its capacity to effectively optimize expansion decisions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
期刊最新文献
Front Cover: Disturbance observer-based finite-time control of a photovoltaic-battery hybrid power system Security constrained optimal power shutoff for wildfire risk mitigation Disturbance observer-based finite-time control of a photovoltaic-battery hybrid power system Multi-agent reinforcement learning in a new transactive energy mechanism Optimized operation of integrated electricity-HCNG systems with distributed hydrogen injecting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1