使用数据卡构建基于数据的决策树的教学和学习,作为初中机器学习的第一课

Q3 Social Sciences Statistics Education Research Journal Pub Date : 2024-08-10 DOI:10.52041/serj.v23i1.450
Yannik Fleischer, Susanne Podworny, Rolf Biehler
{"title":"使用数据卡构建基于数据的决策树的教学和学习,作为初中机器学习的第一课","authors":"Yannik Fleischer, Susanne Podworny, Rolf Biehler","doi":"10.52041/serj.v23i1.450","DOIUrl":null,"url":null,"abstract":"This study investigates how 11- to 12-year-old students construct data-based decision trees using data cards for classification purposes. We examine the students' heuristics and reasoning during this process. The research is based on an eight-week teaching unit during which students labeled data, built decision trees, and assessed them using test data. They learned to manually construct decision trees to classify food items as recommendable or not. They utilized data cards with a heuristic that is a simplified form of a machine learning algorithm. We report on evidence that this topic is teachable to middle school students, along with insights for refining our teaching approach and broader implications for teaching machine learning at the school level.","PeriodicalId":38581,"journal":{"name":"Statistics Education Research Journal","volume":"11 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TEACHING AND LEARNING TO CONSTRUCT DATA-BASED DECISION TREES USING DATA CARDS AS THE FIRST INTRODUCTION TO MACHINE LEARNING IN MIDDLE SCHOOL\",\"authors\":\"Yannik Fleischer, Susanne Podworny, Rolf Biehler\",\"doi\":\"10.52041/serj.v23i1.450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates how 11- to 12-year-old students construct data-based decision trees using data cards for classification purposes. We examine the students' heuristics and reasoning during this process. The research is based on an eight-week teaching unit during which students labeled data, built decision trees, and assessed them using test data. They learned to manually construct decision trees to classify food items as recommendable or not. They utilized data cards with a heuristic that is a simplified form of a machine learning algorithm. We report on evidence that this topic is teachable to middle school students, along with insights for refining our teaching approach and broader implications for teaching machine learning at the school level.\",\"PeriodicalId\":38581,\"journal\":{\"name\":\"Statistics Education Research Journal\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Education Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52041/serj.v23i1.450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Education Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52041/serj.v23i1.450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了 11 至 12 岁的学生如何利用数据卡构建基于数据的决策树,以达到分类的目的。我们研究了学生在这一过程中的启发式方法和推理。研究基于一个为期八周的教学单元,在此期间,学生们标注数据、构建决策树,并使用测试数据对其进行评估。他们学会了手动构建决策树,将食品分类为可推荐或不可推荐。他们利用带有启发式的数据卡,这种启发式是机器学习算法的简化形式。我们报告了可向中学生教授这一主题的证据,以及改进我们的教学方法的见解和在学校层面教授机器学习的更广泛意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TEACHING AND LEARNING TO CONSTRUCT DATA-BASED DECISION TREES USING DATA CARDS AS THE FIRST INTRODUCTION TO MACHINE LEARNING IN MIDDLE SCHOOL
This study investigates how 11- to 12-year-old students construct data-based decision trees using data cards for classification purposes. We examine the students' heuristics and reasoning during this process. The research is based on an eight-week teaching unit during which students labeled data, built decision trees, and assessed them using test data. They learned to manually construct decision trees to classify food items as recommendable or not. They utilized data cards with a heuristic that is a simplified form of a machine learning algorithm. We report on evidence that this topic is teachable to middle school students, along with insights for refining our teaching approach and broader implications for teaching machine learning at the school level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics Education Research Journal
Statistics Education Research Journal Social Sciences-Education
CiteScore
1.30
自引率
0.00%
发文量
46
期刊介绍: SERJ is a peer-reviewed electronic journal of the International Association for Statistical Education (IASE) and the International Statistical Institute (ISI). SERJ is published twice a year and is free. SERJ aims to advance research-based knowledge that can help to improve the teaching, learning, and understanding of statistics or probability at all educational levels and in both formal (classroom-based) and informal (out-of-classroom) contexts. Such research may examine, for example, cognitive, motivational, attitudinal, curricular, teaching-related, technology-related, organizational, or societal factors and processes that are related to the development and understanding of stochastic knowledge. In addition, research may focus on how people use or apply statistical and probabilistic information and ideas, broadly viewed. The Journal encourages the submission of quality papers related to the above goals, such as reports of original research (both quantitative and qualitative), integrative and critical reviews of research literature, analyses of research-based theoretical and methodological models, and other types of papers described in full in the Guidelines for Authors. All papers are reviewed internally by an Associate Editor or Editor, and are blind-reviewed by at least two external referees. Contributions in English are recommended. Contributions in French and Spanish will also be considered. A submitted paper must not have been published before or be under consideration for publication elsewhere.
期刊最新文献
TEACHING AND LEARNING TO CONSTRUCT DATA-BASED DECISION TREES USING DATA CARDS AS THE FIRST INTRODUCTION TO MACHINE LEARNING IN MIDDLE SCHOOL EXAMINING THE ROLE OF CONTEXT IN STATISTICAL LITERACY OUTCOMES USING AN ISOMORPHIC ASSESSMENT INSTRUMENT BRAZILIAN RESEARCH IN STATISTICS, PROBABILITY AND COMBINATORICS EDUCATION: A LOOK AT THESES RESOURCES AND TENSIONS IN STUDENT THINKING ABOUT STATISTICAL DESIGN OPPORTUNITIES TO LEARN MEAN, MEDIAN, AND MODE AFFORDED BY TEXTBOOK TASKS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1