Annie E Cathignol, L. Kusch, Marianna Angiolelli, E. Troisi Lopez, A. Polverino, A. Romano, G. Sorrentino, V. Jirsa, G. Rabuffo, P. Sorrentino
{"title":"根据大脑动态状态进行脑磁图降维","authors":"Annie E Cathignol, L. Kusch, Marianna Angiolelli, E. Troisi Lopez, A. Polverino, A. Romano, G. Sorrentino, V. Jirsa, G. Rabuffo, P. Sorrentino","doi":"10.1101/2024.08.08.607151","DOIUrl":null,"url":null,"abstract":"Complex spontaneous brain dynamics mirror the large number of interactions taking place among regions, supporting higher functions. Such complexity is manifested in the inter-regional dependencies among signals derived from different brain areas, as observed utilising neuroimaging techniques, like magnetoencephalography. The dynamics of this data produce numerous subsets of active regions at any moment as they evolve. Notably, converging evidence shows that these states can be understood in terms of transient coordinated events that spread across the brain over multiple spatial and temporal scales. Those can be used as a proxy of the “effectiveness” of the dynamics, as they become stereotyped or disorganised in neurological diseases. However, given the high dimensional nature of the data, representing them has been challenging thus far. Dimensionality reduction techniques are typically deployed to describe complex interdependencies and improve their interpretability. However, many dimensionality reduction techniques lose information about the sequence of configurations that took place. Here, we leverage a newly described algorithm, PHATE (Potential of Heat-diffusion for Affinity-based Transition Embedding), specifically designed to preserve the dynamics of the system in the low-dimensional embedding space. We analysed source-reconstructed resting-state magnetoencephalography from 18 healthy subjects to represent the dynamics of the configuration in low-dimensional space. After reduction with PHATE, unsupervised clustering via K-means is applied to identify distinct clusters. The topography of the states is described, and the dynamics are represented as a transition matrix. All the results have been checked against null models, providing a parsimonious account of the large-scale, fast, aperiodic dynamics during resting-state.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":"74 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetoencephalography dimensionality reduction informed by dynamic brain states\",\"authors\":\"Annie E Cathignol, L. Kusch, Marianna Angiolelli, E. Troisi Lopez, A. Polverino, A. Romano, G. Sorrentino, V. Jirsa, G. Rabuffo, P. Sorrentino\",\"doi\":\"10.1101/2024.08.08.607151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex spontaneous brain dynamics mirror the large number of interactions taking place among regions, supporting higher functions. Such complexity is manifested in the inter-regional dependencies among signals derived from different brain areas, as observed utilising neuroimaging techniques, like magnetoencephalography. The dynamics of this data produce numerous subsets of active regions at any moment as they evolve. Notably, converging evidence shows that these states can be understood in terms of transient coordinated events that spread across the brain over multiple spatial and temporal scales. Those can be used as a proxy of the “effectiveness” of the dynamics, as they become stereotyped or disorganised in neurological diseases. However, given the high dimensional nature of the data, representing them has been challenging thus far. Dimensionality reduction techniques are typically deployed to describe complex interdependencies and improve their interpretability. However, many dimensionality reduction techniques lose information about the sequence of configurations that took place. Here, we leverage a newly described algorithm, PHATE (Potential of Heat-diffusion for Affinity-based Transition Embedding), specifically designed to preserve the dynamics of the system in the low-dimensional embedding space. We analysed source-reconstructed resting-state magnetoencephalography from 18 healthy subjects to represent the dynamics of the configuration in low-dimensional space. After reduction with PHATE, unsupervised clustering via K-means is applied to identify distinct clusters. The topography of the states is described, and the dynamics are represented as a transition matrix. All the results have been checked against null models, providing a parsimonious account of the large-scale, fast, aperiodic dynamics during resting-state.\",\"PeriodicalId\":505198,\"journal\":{\"name\":\"bioRxiv\",\"volume\":\"74 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.08.607151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.08.607151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetoencephalography dimensionality reduction informed by dynamic brain states
Complex spontaneous brain dynamics mirror the large number of interactions taking place among regions, supporting higher functions. Such complexity is manifested in the inter-regional dependencies among signals derived from different brain areas, as observed utilising neuroimaging techniques, like magnetoencephalography. The dynamics of this data produce numerous subsets of active regions at any moment as they evolve. Notably, converging evidence shows that these states can be understood in terms of transient coordinated events that spread across the brain over multiple spatial and temporal scales. Those can be used as a proxy of the “effectiveness” of the dynamics, as they become stereotyped or disorganised in neurological diseases. However, given the high dimensional nature of the data, representing them has been challenging thus far. Dimensionality reduction techniques are typically deployed to describe complex interdependencies and improve their interpretability. However, many dimensionality reduction techniques lose information about the sequence of configurations that took place. Here, we leverage a newly described algorithm, PHATE (Potential of Heat-diffusion for Affinity-based Transition Embedding), specifically designed to preserve the dynamics of the system in the low-dimensional embedding space. We analysed source-reconstructed resting-state magnetoencephalography from 18 healthy subjects to represent the dynamics of the configuration in low-dimensional space. After reduction with PHATE, unsupervised clustering via K-means is applied to identify distinct clusters. The topography of the states is described, and the dynamics are represented as a transition matrix. All the results have been checked against null models, providing a parsimonious account of the large-scale, fast, aperiodic dynamics during resting-state.