基于 DNN 的思想理论课在线资源推荐

IF 0.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of e-Collaboration Pub Date : 2024-08-09 DOI:10.4018/ijec.349976
Jinrong Yu, Wenzhang Sun
{"title":"基于 DNN 的思想理论课在线资源推荐","authors":"Jinrong Yu, Wenzhang Sun","doi":"10.4018/ijec.349976","DOIUrl":null,"url":null,"abstract":"Revamped IPE confronts static material constraints and outdated pedagogy, warranting integration of web resources and big data analytics for instructional innovation. Digital IPE adoption in vocational education optimizes online resource use, enhancing teaching effectiveness. Introducing CUPMF, a personalized learning model, we conduct empirical assessments on a large dataset (364,617+ entries) from Smart Classroom's cloud platform and public datasets, reflecting varied IPE scenarios. Comparative experiments against association rule, content-, tag-based, and collaborative filtering algorithms show CUPMF's superiority. It achieves a 11.61% F1 score boost over four alternatives for basic recommendations and outperforms Que Rec by 1.975%. Complexity-wise, CUPMF registers an 11.52% mean F1 score increment over four methods and 1.875% over Que Rec. Proven, CUPMF markedly improves IPE resource recommendation accuracy and efficacy, poised to transform personalized online vocational learning.","PeriodicalId":46330,"journal":{"name":"International Journal of e-Collaboration","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNN-Based Resource Recommendation for Ideology Theory Courses Online\",\"authors\":\"Jinrong Yu, Wenzhang Sun\",\"doi\":\"10.4018/ijec.349976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Revamped IPE confronts static material constraints and outdated pedagogy, warranting integration of web resources and big data analytics for instructional innovation. Digital IPE adoption in vocational education optimizes online resource use, enhancing teaching effectiveness. Introducing CUPMF, a personalized learning model, we conduct empirical assessments on a large dataset (364,617+ entries) from Smart Classroom's cloud platform and public datasets, reflecting varied IPE scenarios. Comparative experiments against association rule, content-, tag-based, and collaborative filtering algorithms show CUPMF's superiority. It achieves a 11.61% F1 score boost over four alternatives for basic recommendations and outperforms Que Rec by 1.975%. Complexity-wise, CUPMF registers an 11.52% mean F1 score increment over four methods and 1.875% over Que Rec. Proven, CUPMF markedly improves IPE resource recommendation accuracy and efficacy, poised to transform personalized online vocational learning.\",\"PeriodicalId\":46330,\"journal\":{\"name\":\"International Journal of e-Collaboration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of e-Collaboration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijec.349976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of e-Collaboration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijec.349976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

改造后的 IPE 面临着静态材料的限制和过时的教学法,需要整合网络资源和大数据分析,以实现教学创新。在职业教育中采用数字化 IPE 可以优化网络资源的使用,提高教学效果。我们引入了个性化学习模型 CUPMF,在智慧课堂云平台的大型数据集(364,617+条目)和公共数据集上进行了实证评估,反映了不同的 IPE 场景。与关联规则算法、基于内容的算法、基于标签的算法和协同过滤算法的对比实验显示了 CUPMF 的优越性。在基本推荐方面,它比四种备选算法的 F1 分数提高了 11.61%,比 Que Rec 高出 1.975%。从复杂性来看,CUPMF 比四种方法的平均 F1 分数提高了 11.52%,比 Que Rec 高出 1.875%。事实证明,CUPMF 显著提高了 IPE 资源推荐的准确性和有效性,有望改变个性化在线职业学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNN-Based Resource Recommendation for Ideology Theory Courses Online
Revamped IPE confronts static material constraints and outdated pedagogy, warranting integration of web resources and big data analytics for instructional innovation. Digital IPE adoption in vocational education optimizes online resource use, enhancing teaching effectiveness. Introducing CUPMF, a personalized learning model, we conduct empirical assessments on a large dataset (364,617+ entries) from Smart Classroom's cloud platform and public datasets, reflecting varied IPE scenarios. Comparative experiments against association rule, content-, tag-based, and collaborative filtering algorithms show CUPMF's superiority. It achieves a 11.61% F1 score boost over four alternatives for basic recommendations and outperforms Que Rec by 1.975%. Complexity-wise, CUPMF registers an 11.52% mean F1 score increment over four methods and 1.875% over Que Rec. Proven, CUPMF markedly improves IPE resource recommendation accuracy and efficacy, poised to transform personalized online vocational learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of e-Collaboration
International Journal of e-Collaboration COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
1.90
自引率
5.90%
发文量
73
期刊介绍: The International Journal of e-Collaboration (IJeC) addresses the design and implementation of e-collaboration technologies, assesses its behavioral impact on individuals and groups, and presents theoretical considerations on links between the use of e-collaboration technologies and behavioral patterns. An innovative collection of the latest research findings, this journal covers significant topics such as Web-based chat tools, Web-based asynchronous conferencing tools, e-mail, listservs, collaborative writing tools, group decision support systems, teleconferencing suites, workflow automation systems, and document management technologies.
期刊最新文献
DNN-Based Resource Recommendation for Ideology Theory Courses Online Research on Student Management Platform Based on Big Data Under Low-Carbon Environment Application Research and Analysis of Panoramic Virtual Reality Technology Based on Sustainable Development of the Ecological Environment Innovative Analysis of Student Management Path Based on Artificial Intelligence and Big Data Integration Research on ZKP Algorithm of Data Asset Security and Privacy Protection Based on Blockchain Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1