深度伪造检测方法调查:创新、准确性和未来方向

Parminder Singh
{"title":"深度伪造检测方法调查:创新、准确性和未来方向","authors":"Parminder Singh","doi":"10.55041/ijsrem37000","DOIUrl":null,"url":null,"abstract":"Deepfake technology has emerged as a significant challenge in digital media, posing risks related to misinformation and identity theft. This paper provides a comprehensive review of deepfake detection techniques, highlighting advancements in traditional machine learning, deep learning models, hybrid approaches, and attention mechanisms. We evaluate the effectiveness of various methods based on accuracy, computational efficiency, and practical applicability, using key datasets and benchmarking systems. Our review underscores the progress made in detecting deepfakes and identifies areas for future research, including real-time detection, multimodal approaches, and improvements in computational efficiency. Key Words: Deepfake detection, machine learning, deep learning, convolutional neural networks, transformers, attention mechanisms, multimodal data, benchmarking systems, datasets.","PeriodicalId":13661,"journal":{"name":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","volume":"52 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Deepfake Detection Methods: Innovations, Accuracy, and Future Directions\",\"authors\":\"Parminder Singh\",\"doi\":\"10.55041/ijsrem37000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deepfake technology has emerged as a significant challenge in digital media, posing risks related to misinformation and identity theft. This paper provides a comprehensive review of deepfake detection techniques, highlighting advancements in traditional machine learning, deep learning models, hybrid approaches, and attention mechanisms. We evaluate the effectiveness of various methods based on accuracy, computational efficiency, and practical applicability, using key datasets and benchmarking systems. Our review underscores the progress made in detecting deepfakes and identifies areas for future research, including real-time detection, multimodal approaches, and improvements in computational efficiency. Key Words: Deepfake detection, machine learning, deep learning, convolutional neural networks, transformers, attention mechanisms, multimodal data, benchmarking systems, datasets.\",\"PeriodicalId\":13661,\"journal\":{\"name\":\"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT\",\"volume\":\"52 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55041/ijsrem37000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/ijsrem37000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度伪造技术已成为数字媒体领域的一项重大挑战,带来了与错误信息和身份盗窃相关的风险。本文全面回顾了深度伪造检测技术,重点介绍了传统机器学习、深度学习模型、混合方法和注意力机制的进展。我们使用关键数据集和基准系统,根据准确性、计算效率和实际适用性评估了各种方法的有效性。我们的综述强调了在检测深度伪造方面取得的进展,并确定了未来的研究领域,包括实时检测、多模态方法和计算效率的提高。关键字深度伪造检测、机器学习、深度学习、卷积神经网络、转换器、注意机制、多模态数据、基准系统、数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Survey of Deepfake Detection Methods: Innovations, Accuracy, and Future Directions
Deepfake technology has emerged as a significant challenge in digital media, posing risks related to misinformation and identity theft. This paper provides a comprehensive review of deepfake detection techniques, highlighting advancements in traditional machine learning, deep learning models, hybrid approaches, and attention mechanisms. We evaluate the effectiveness of various methods based on accuracy, computational efficiency, and practical applicability, using key datasets and benchmarking systems. Our review underscores the progress made in detecting deepfakes and identifies areas for future research, including real-time detection, multimodal approaches, and improvements in computational efficiency. Key Words: Deepfake detection, machine learning, deep learning, convolutional neural networks, transformers, attention mechanisms, multimodal data, benchmarking systems, datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents Exploring Vulnerabilities and Threats in Large Language Models: Safeguarding Against Exploitation and Misuse BANK TRANSACTION USING IRIS AND BIOMETRIC Experimental Investigation of Leachate Treatment Using Low-Cost Adsorbents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1