微波-杰弗里、微波-奥尔德罗伊德-B 和微波-Second 级二元纳米流体在 PTSCs 环境中的传热和熵产生的比较表征

Philopatir B. Raafat, Muhammad AbuGhanem, Fayez N. Ibrahim
{"title":"微波-杰弗里、微波-奥尔德罗伊德-B 和微波-Second 级二元纳米流体在 PTSCs 环境中的传热和熵产生的比较表征","authors":"Philopatir B. Raafat, Muhammad AbuGhanem, Fayez N. Ibrahim","doi":"10.1002/zamm.202400028","DOIUrl":null,"url":null,"abstract":"In this paper, we delve into the behavior of binary micropolar nanofluids, specifically micropolar‐Jeffrey, micropolar‐Oldroyd‐B, and micropolar‐Second grade, within the parabolic trough solar collector (PTSC) configurations. The primary objective is to enhance the collective efficiency of this device by means of a comprehensive comparison amongst the three aforementioned nanofluids. The governing equations, including continuity, linear momentum, angular momentum, and energy equations, were systematically formulated. Subsequently, the introduction of suitable similarity variables facilitated the transformation of the intricate partial differential equations into manageable ordinary differential equations. These resultant equations were then tackled utilizing the shooting method via the bvp4c numerical package in MATLAB. The study critically examines the influence of diverse parameters that dictate the flow dynamics of the nanofluids. This encompasses nanofluid velocity, angular velocity, temperature distribution, entropy generation, skin friction coefficient, and local Nusselt number. Remarkably, the research uncovers that the maximum temperature levels experienced enhancements of 12.1134%, 12.0616%, and 11.0645% for the micropolar‐Jeffrey, micropolar‐Oldroyd‐B, and micropolar‐Second grade nanofluids, respectively. These results imply that the introduction of these binary micropolar nanofluids leads to notable thermal enhancements in the PTSCs settings.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative characterization of heat transfer and entropy generation of micropolar‐Jeffrey, micropolar‐Oldroyd‐B, and micropolar‐Second grade binary nanofluids in PTSCs settings\",\"authors\":\"Philopatir B. Raafat, Muhammad AbuGhanem, Fayez N. Ibrahim\",\"doi\":\"10.1002/zamm.202400028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we delve into the behavior of binary micropolar nanofluids, specifically micropolar‐Jeffrey, micropolar‐Oldroyd‐B, and micropolar‐Second grade, within the parabolic trough solar collector (PTSC) configurations. The primary objective is to enhance the collective efficiency of this device by means of a comprehensive comparison amongst the three aforementioned nanofluids. The governing equations, including continuity, linear momentum, angular momentum, and energy equations, were systematically formulated. Subsequently, the introduction of suitable similarity variables facilitated the transformation of the intricate partial differential equations into manageable ordinary differential equations. These resultant equations were then tackled utilizing the shooting method via the bvp4c numerical package in MATLAB. The study critically examines the influence of diverse parameters that dictate the flow dynamics of the nanofluids. This encompasses nanofluid velocity, angular velocity, temperature distribution, entropy generation, skin friction coefficient, and local Nusselt number. Remarkably, the research uncovers that the maximum temperature levels experienced enhancements of 12.1134%, 12.0616%, and 11.0645% for the micropolar‐Jeffrey, micropolar‐Oldroyd‐B, and micropolar‐Second grade nanofluids, respectively. These results imply that the introduction of these binary micropolar nanofluids leads to notable thermal enhancements in the PTSCs settings.\",\"PeriodicalId\":509544,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202400028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202400028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们深入研究了抛物面槽式太阳能集热器(PTSC)配置中的二元微波纳米流体的行为,特别是微波-杰弗里、微波-奥尔德罗伊德-B 和微波-秒级。主要目的是通过对上述三种纳米流体进行综合比较,提高该装置的整体效率。研究系统地制定了包括连续性方程、线性动量方程、角动量方程和能量方程在内的控制方程。随后,通过引入适当的相似变量,将复杂的偏微分方程转化为易于处理的常微分方程。然后,通过 MATLAB 中的 bvp4c 数值软件包,利用射影法处理这些生成的方程。该研究严格审查了决定纳米流体流动动力学的各种参数的影响。这包括纳米流体的速度、角速度、温度分布、熵的产生、表皮摩擦系数和局部努塞尔特数。值得注意的是,研究发现,micropolar-Jeffrey、micropolar-Oldroyd-B 和 micropolar-Second 级纳米流体的最高温度水平分别提高了 12.1134%、12.0616% 和 11.0645%。这些结果表明,引入这些二元微极纳米流体可显著提高 PTSCs 设置的热效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative characterization of heat transfer and entropy generation of micropolar‐Jeffrey, micropolar‐Oldroyd‐B, and micropolar‐Second grade binary nanofluids in PTSCs settings
In this paper, we delve into the behavior of binary micropolar nanofluids, specifically micropolar‐Jeffrey, micropolar‐Oldroyd‐B, and micropolar‐Second grade, within the parabolic trough solar collector (PTSC) configurations. The primary objective is to enhance the collective efficiency of this device by means of a comprehensive comparison amongst the three aforementioned nanofluids. The governing equations, including continuity, linear momentum, angular momentum, and energy equations, were systematically formulated. Subsequently, the introduction of suitable similarity variables facilitated the transformation of the intricate partial differential equations into manageable ordinary differential equations. These resultant equations were then tackled utilizing the shooting method via the bvp4c numerical package in MATLAB. The study critically examines the influence of diverse parameters that dictate the flow dynamics of the nanofluids. This encompasses nanofluid velocity, angular velocity, temperature distribution, entropy generation, skin friction coefficient, and local Nusselt number. Remarkably, the research uncovers that the maximum temperature levels experienced enhancements of 12.1134%, 12.0616%, and 11.0645% for the micropolar‐Jeffrey, micropolar‐Oldroyd‐B, and micropolar‐Second grade nanofluids, respectively. These results imply that the introduction of these binary micropolar nanofluids leads to notable thermal enhancements in the PTSCs settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of entropy generation and MHD thermo‐solutal convection flow of Ellis nanofluid through inclined microchannel A generalized Allen–Cahn model with mass source and its Cahn–Hilliard limit Comparative characterization of heat transfer and entropy generation of micropolar‐Jeffrey, micropolar‐Oldroyd‐B, and micropolar‐Second grade binary nanofluids in PTSCs settings Numerical study of third‐grade nanofluid flow with motile microorganisms under the mixed convection regime over a stretching cylinder An in‐depth comparative analysis of entropy generation and heat transfer in micropolar‐Williamson, micropolar‐Maxwell, and micropolar‐Casson binary nanofluids within PTSCs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1