Yichen Jiang, Bowen Zhou, Guangdi Li, Yanhong Luo, Bo Hu, Yubo Liu
{"title":"基于虚拟储能的电动汽车集群充放电策略","authors":"Yichen Jiang, Bowen Zhou, Guangdi Li, Yanhong Luo, Bo Hu, Yubo Liu","doi":"10.3390/wevj15080359","DOIUrl":null,"url":null,"abstract":"In order to address the challenges posed by the integration of regional electric vehicle (EV) clusters into the grid, it is crucial to fully utilize the scheduling capabilities of EVs. In this study, to investigate the energy storage characteristics of EVs, we first established a single EV virtual energy storage (EVVES) model based on the energy storage characteristics of EVs. We then further integrated four types of EVs within the region to form EV clusters (EVCs) and constructed an EVC virtual energy storage (VES) model to obtain the dynamic charging and discharging boundaries of the EVCs. Next, based on the dispatch framework for the participation of renewable energy sources (RESs) and loads in the distribution network, we established a dual-objective optimization dispatch model, with the objectives of minimizing system operating costs and load fluctuations. We solved this model with NSGA-II and TOPSIS, which guided and optimized the charging and discharging of EVCs. Finally, the simulation results show that the system operating cost was reduced by 7.81%, and the peak-to-valley difference of the load was reduced by 3.83% after optimization. The system effectively achieves load peak shaving and valley filling, improving economic efficiency.","PeriodicalId":507038,"journal":{"name":"World Electric Vehicle Journal","volume":"25 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual Energy Storage-Based Charging and Discharging Strategy for Electric Vehicle Clusters\",\"authors\":\"Yichen Jiang, Bowen Zhou, Guangdi Li, Yanhong Luo, Bo Hu, Yubo Liu\",\"doi\":\"10.3390/wevj15080359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to address the challenges posed by the integration of regional electric vehicle (EV) clusters into the grid, it is crucial to fully utilize the scheduling capabilities of EVs. In this study, to investigate the energy storage characteristics of EVs, we first established a single EV virtual energy storage (EVVES) model based on the energy storage characteristics of EVs. We then further integrated four types of EVs within the region to form EV clusters (EVCs) and constructed an EVC virtual energy storage (VES) model to obtain the dynamic charging and discharging boundaries of the EVCs. Next, based on the dispatch framework for the participation of renewable energy sources (RESs) and loads in the distribution network, we established a dual-objective optimization dispatch model, with the objectives of minimizing system operating costs and load fluctuations. We solved this model with NSGA-II and TOPSIS, which guided and optimized the charging and discharging of EVCs. Finally, the simulation results show that the system operating cost was reduced by 7.81%, and the peak-to-valley difference of the load was reduced by 3.83% after optimization. The system effectively achieves load peak shaving and valley filling, improving economic efficiency.\",\"PeriodicalId\":507038,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":\"25 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj15080359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15080359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Virtual Energy Storage-Based Charging and Discharging Strategy for Electric Vehicle Clusters
In order to address the challenges posed by the integration of regional electric vehicle (EV) clusters into the grid, it is crucial to fully utilize the scheduling capabilities of EVs. In this study, to investigate the energy storage characteristics of EVs, we first established a single EV virtual energy storage (EVVES) model based on the energy storage characteristics of EVs. We then further integrated four types of EVs within the region to form EV clusters (EVCs) and constructed an EVC virtual energy storage (VES) model to obtain the dynamic charging and discharging boundaries of the EVCs. Next, based on the dispatch framework for the participation of renewable energy sources (RESs) and loads in the distribution network, we established a dual-objective optimization dispatch model, with the objectives of minimizing system operating costs and load fluctuations. We solved this model with NSGA-II and TOPSIS, which guided and optimized the charging and discharging of EVCs. Finally, the simulation results show that the system operating cost was reduced by 7.81%, and the peak-to-valley difference of the load was reduced by 3.83% after optimization. The system effectively achieves load peak shaving and valley filling, improving economic efficiency.