考虑扰动的地球观测卫星多目标动态任务调度算法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-08-08 DOI:10.3390/aerospace11080643
Hai Li, Yongjun Li, Yuanhao Liu, Kai Zhang, Xin Li, Yu Li, Shanghong Zhao
{"title":"考虑扰动的地球观测卫星多目标动态任务调度算法","authors":"Hai Li, Yongjun Li, Yuanhao Liu, Kai Zhang, Xin Li, Yu Li, Shanghong Zhao","doi":"10.3390/aerospace11080643","DOIUrl":null,"url":null,"abstract":"The number of real-time dynamic satellite observation missions has been rapidly increasing recently, while little attention has been paid to the dynamic mission-scheduling problem. It is crucial to reduce perturbations to the initial scheduling plan for the dynamic mission-scheduling as the perturbations have a significant impact on the stability of the Earth observation satellites (EOSs). In this paper, we focus on the EOS dynamic mission-scheduling problem, where the observation profit and perturbation are considered simultaneously. A multi-objective dynamic mission-scheduling mathematical model is first formulated. Then, we propose a multi-objective dynamic mission-scheduling algorithm (MODMSA) based on the improved Strength Pareto Evolutionary Algorithm (SPEA2). In the MODMSA, a novel two-stage individual representation, a minimum perturbation random initialization, multi-point crossover, and greedy mutation are designed to expand the search scope and improve the search efficiency. In addition, a profit-oriented local search algorithm is introduced into the SPEA2 to improve the convergence speed. Furthermore, an adaptive perturbation control strategy is adopted to improve the diversity of non−dominated solutions. Extensive experiments are conducted to evaluate the performance of the MODMSA. The simulation results show that the MODMSA outperforms other comparison algorithms in terms of solution quality and diversity, which demonstrates that the MODMSA is promising for practical EOS systems.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Objective Dynamic Mission-Scheduling Algorithm Considering Perturbations for Earth Observation Satellites\",\"authors\":\"Hai Li, Yongjun Li, Yuanhao Liu, Kai Zhang, Xin Li, Yu Li, Shanghong Zhao\",\"doi\":\"10.3390/aerospace11080643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The number of real-time dynamic satellite observation missions has been rapidly increasing recently, while little attention has been paid to the dynamic mission-scheduling problem. It is crucial to reduce perturbations to the initial scheduling plan for the dynamic mission-scheduling as the perturbations have a significant impact on the stability of the Earth observation satellites (EOSs). In this paper, we focus on the EOS dynamic mission-scheduling problem, where the observation profit and perturbation are considered simultaneously. A multi-objective dynamic mission-scheduling mathematical model is first formulated. Then, we propose a multi-objective dynamic mission-scheduling algorithm (MODMSA) based on the improved Strength Pareto Evolutionary Algorithm (SPEA2). In the MODMSA, a novel two-stage individual representation, a minimum perturbation random initialization, multi-point crossover, and greedy mutation are designed to expand the search scope and improve the search efficiency. In addition, a profit-oriented local search algorithm is introduced into the SPEA2 to improve the convergence speed. Furthermore, an adaptive perturbation control strategy is adopted to improve the diversity of non−dominated solutions. Extensive experiments are conducted to evaluate the performance of the MODMSA. The simulation results show that the MODMSA outperforms other comparison algorithms in terms of solution quality and diversity, which demonstrates that the MODMSA is promising for practical EOS systems.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11080643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11080643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

近来,实时动态卫星观测任务的数量迅速增加,而动态任务调度问题却鲜有人关注。由于扰动对地球观测卫星(EOS)的稳定性有重大影响,因此减少对动态任务调度初始调度计划的扰动至关重要。在本文中,我们将重点研究同时考虑观测收益和扰动的地球观测卫星动态任务调度问题。首先建立了一个多目标动态任务调度数学模型。然后,我们提出了一种基于改进强度帕累托进化算法(SPEA2)的多目标动态任务调度算法(MODMSA)。在 MODMSA 中,设计了新颖的两阶段个体表示、最小扰动随机初始化、多点交叉和贪婪突变,以扩大搜索范围并提高搜索效率。此外,SPEA2 还引入了以利润为导向的局部搜索算法,以提高收敛速度。此外,还采用了自适应扰动控制策略来提高非主导解的多样性。为了评估 MODMSA 的性能,我们进行了大量实验。仿真结果表明,MODMSA在解的质量和多样性方面优于其他比较算法,这表明MODMSA在实际EOS系统中大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Objective Dynamic Mission-Scheduling Algorithm Considering Perturbations for Earth Observation Satellites
The number of real-time dynamic satellite observation missions has been rapidly increasing recently, while little attention has been paid to the dynamic mission-scheduling problem. It is crucial to reduce perturbations to the initial scheduling plan for the dynamic mission-scheduling as the perturbations have a significant impact on the stability of the Earth observation satellites (EOSs). In this paper, we focus on the EOS dynamic mission-scheduling problem, where the observation profit and perturbation are considered simultaneously. A multi-objective dynamic mission-scheduling mathematical model is first formulated. Then, we propose a multi-objective dynamic mission-scheduling algorithm (MODMSA) based on the improved Strength Pareto Evolutionary Algorithm (SPEA2). In the MODMSA, a novel two-stage individual representation, a minimum perturbation random initialization, multi-point crossover, and greedy mutation are designed to expand the search scope and improve the search efficiency. In addition, a profit-oriented local search algorithm is introduced into the SPEA2 to improve the convergence speed. Furthermore, an adaptive perturbation control strategy is adopted to improve the diversity of non−dominated solutions. Extensive experiments are conducted to evaluate the performance of the MODMSA. The simulation results show that the MODMSA outperforms other comparison algorithms in terms of solution quality and diversity, which demonstrates that the MODMSA is promising for practical EOS systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1