通过调节肠道微生物加强癌症免疫疗法和抗血管生成疗法:机遇与挑战

Jie Xu, Yaomei Tian, Die Hu, Xi Yan, Li Yang
{"title":"通过调节肠道微生物加强癌症免疫疗法和抗血管生成疗法:机遇与挑战","authors":"Jie Xu,&nbsp;Yaomei Tian,&nbsp;Die Hu,&nbsp;Xi Yan,&nbsp;Li Yang","doi":"10.1002/mog2.85","DOIUrl":null,"url":null,"abstract":"<p>As the largest microecosystem in the human body, gut microbes (GMs) and their metabolites play an important role in regulating human health. In recent years, immune checkpoint therapy (ICT) combined with antiangiogenic agents is an emerging combination therapy for cancer. There is growing evidence that GMs can affect the effectiveness of drugs to treat cancer. GMs not only regulate angiogenesis in the tumor microenvironment, but also influence the efficacy of immune checkpoint inhibitors. Many studies show that <i>Bifidobacterium</i> can upregulate the anticancer function of immune checkpoint blockers. In addition, GMs have been found to be involved in the formation of blood vessels and other developmental processes. Clinically, GMs are believed to play a key role in patients receiving antiangiogenic therapy and ICT. In this perspective, we provide an overview of the composition and function of the gut microbiome, and discuss the role of the GMs against the conditioning of angiogenic therapy and ICT. We also summarize new approaches and clinical translational trials using GMs for cancer therapy, and present opportunities and challenges for targeting GMs for cancer therapy in the future.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.85","citationCount":"0","resultStr":"{\"title\":\"Enhancing cancer immunotherapy and antiangiogenic therapy by regulating gut microbes: Opportunities and challenges\",\"authors\":\"Jie Xu,&nbsp;Yaomei Tian,&nbsp;Die Hu,&nbsp;Xi Yan,&nbsp;Li Yang\",\"doi\":\"10.1002/mog2.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the largest microecosystem in the human body, gut microbes (GMs) and their metabolites play an important role in regulating human health. In recent years, immune checkpoint therapy (ICT) combined with antiangiogenic agents is an emerging combination therapy for cancer. There is growing evidence that GMs can affect the effectiveness of drugs to treat cancer. GMs not only regulate angiogenesis in the tumor microenvironment, but also influence the efficacy of immune checkpoint inhibitors. Many studies show that <i>Bifidobacterium</i> can upregulate the anticancer function of immune checkpoint blockers. In addition, GMs have been found to be involved in the formation of blood vessels and other developmental processes. Clinically, GMs are believed to play a key role in patients receiving antiangiogenic therapy and ICT. In this perspective, we provide an overview of the composition and function of the gut microbiome, and discuss the role of the GMs against the conditioning of angiogenic therapy and ICT. We also summarize new approaches and clinical translational trials using GMs for cancer therapy, and present opportunities and challenges for targeting GMs for cancer therapy in the future.</p>\",\"PeriodicalId\":100902,\"journal\":{\"name\":\"MedComm – Oncology\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.85\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm – Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mog2.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm – Oncology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mog2.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为人体内最大的微生态系统,肠道微生物及其代谢产物在调节人体健康方面发挥着重要作用。近年来,免疫检查点疗法(ICT)与抗血管生成药物相结合是一种新兴的癌症联合疗法。越来越多的证据表明,基因改造物质会影响治疗癌症药物的效果。转基因不仅能调节肿瘤微环境中的血管生成,还能影响免疫检查点抑制剂的疗效。许多研究表明,双歧杆菌可以上调免疫检查点阻断剂的抗癌功能。此外,研究还发现转基因参与了血管的形成和其他发育过程。在临床上,GMs 被认为在接受抗血管生成治疗和 ICT 的患者中发挥着关键作用。在本视角中,我们概述了肠道微生物组的组成和功能,并讨论了 GMs 在抗血管生成疗法和 ICT 的调节中的作用。我们还总结了利用全球机制治疗癌症的新方法和临床转化试验,并提出了未来针对全球机制治疗癌症的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing cancer immunotherapy and antiangiogenic therapy by regulating gut microbes: Opportunities and challenges

As the largest microecosystem in the human body, gut microbes (GMs) and their metabolites play an important role in regulating human health. In recent years, immune checkpoint therapy (ICT) combined with antiangiogenic agents is an emerging combination therapy for cancer. There is growing evidence that GMs can affect the effectiveness of drugs to treat cancer. GMs not only regulate angiogenesis in the tumor microenvironment, but also influence the efficacy of immune checkpoint inhibitors. Many studies show that Bifidobacterium can upregulate the anticancer function of immune checkpoint blockers. In addition, GMs have been found to be involved in the formation of blood vessels and other developmental processes. Clinically, GMs are believed to play a key role in patients receiving antiangiogenic therapy and ICT. In this perspective, we provide an overview of the composition and function of the gut microbiome, and discuss the role of the GMs against the conditioning of angiogenic therapy and ICT. We also summarize new approaches and clinical translational trials using GMs for cancer therapy, and present opportunities and challenges for targeting GMs for cancer therapy in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macrophage-Mediated Myelin Recycling Promotes Malignant Development of Glioblastoma Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention Lomitapide: Targeting METTL3 to Overcome Osimertinib Resistance in NSCLC Through Autophagy Activation Ephrin A1 ligand-based CAR-T cells for immunotherapy of EphA2-positive cancer Analysis of reoperational reason of patients with thyroid cancer and strategies for its diagnosis and treatment: A 6-year single-center retrospective study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1