利用遗传工具实现可持续生物能源:生物燃料生产中的甘蔗生物技术综述

Kashif Ahmad, Ray Ming
{"title":"利用遗传工具实现可持续生物能源:生物燃料生产中的甘蔗生物技术综述","authors":"Kashif Ahmad, Ray Ming","doi":"10.3390/agriculture14081312","DOIUrl":null,"url":null,"abstract":"Sugarcane (Saccharum spp.) is a prominent renewable biomass source valued for its potential in sustainable and efficient second-generation biofuel production. This review aims to assess the genetic enhancement potential of sugarcane, emphasizing the use of advanced genetic engineering tools, such as CRISPR-Cas9, to improve traits crucial for biomass yield and biofuel production. The methodology of this review involved a thorough analysis of the recent literature, focusing on the advancements in genetic engineering and biotechnological applications pertinent to sugarcane. The findings reveal that CRISPR-Cas9 technology is particularly effective in enhancing the genetic traits of sugarcane, which are essential for biofuel production. Implementing these genomic tools has shown a significant rise in biomass output and, ultimately, the effectiveness of bioethanol manufacturing, establishing sugarcane as a feasible and reliable source of biofuel implications of these advancements extend. These advancements have a profound impact not only on agricultural productivity but also on enhancing the efficiency and scalability of the bioethanol industry. Developing superior sugarcane varieties is expected to boost economic returns and advance environmental sustainability through carbon-neutral biofuel alternatives. This review underscores the transformative role of genetic engineering in revolutionizing sugarcane as a bioenergy crop. The evolution of genetic engineering tools and methodologies is crucial for tapping into the full potential of sugarcane, and thereby supporting global efforts towards sustainable energy solutions. Future research should focus on refining these biotechnological tools to meet increasing energy demands sustainably, ensure food security, and mitigate negative environmental impacts.","PeriodicalId":503580,"journal":{"name":"Agriculture","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Genetic Tools for Sustainable Bioenergy: A Review of Sugarcane Biotechnology in Biofuel Production\",\"authors\":\"Kashif Ahmad, Ray Ming\",\"doi\":\"10.3390/agriculture14081312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sugarcane (Saccharum spp.) is a prominent renewable biomass source valued for its potential in sustainable and efficient second-generation biofuel production. This review aims to assess the genetic enhancement potential of sugarcane, emphasizing the use of advanced genetic engineering tools, such as CRISPR-Cas9, to improve traits crucial for biomass yield and biofuel production. The methodology of this review involved a thorough analysis of the recent literature, focusing on the advancements in genetic engineering and biotechnological applications pertinent to sugarcane. The findings reveal that CRISPR-Cas9 technology is particularly effective in enhancing the genetic traits of sugarcane, which are essential for biofuel production. Implementing these genomic tools has shown a significant rise in biomass output and, ultimately, the effectiveness of bioethanol manufacturing, establishing sugarcane as a feasible and reliable source of biofuel implications of these advancements extend. These advancements have a profound impact not only on agricultural productivity but also on enhancing the efficiency and scalability of the bioethanol industry. Developing superior sugarcane varieties is expected to boost economic returns and advance environmental sustainability through carbon-neutral biofuel alternatives. This review underscores the transformative role of genetic engineering in revolutionizing sugarcane as a bioenergy crop. The evolution of genetic engineering tools and methodologies is crucial for tapping into the full potential of sugarcane, and thereby supporting global efforts towards sustainable energy solutions. Future research should focus on refining these biotechnological tools to meet increasing energy demands sustainably, ensure food security, and mitigate negative environmental impacts.\",\"PeriodicalId\":503580,\"journal\":{\"name\":\"Agriculture\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture14081312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14081312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

甘蔗(Saccharum spp.)是一种重要的可再生生物质来源,因其在可持续和高效的第二代生物燃料生产中的潜力而备受重视。本综述旨在评估甘蔗的遗传改良潜力,强调使用 CRISPR-Cas9 等先进的遗传工程工具来改良对生物质产量和生物燃料生产至关重要的性状。本综述的方法包括对近期文献进行全面分析,重点关注基因工程的进展以及与甘蔗相关的生物技术应用。研究结果表明,CRISPR-Cas9 技术对提高甘蔗的遗传性状特别有效,而这些性状对生物燃料的生产至关重要。采用这些基因组工具后,生物质产量显著增加,最终提高了生物乙醇的生产效率,使甘蔗成为一种可行、可靠的生物燃料来源。这些进步不仅对农业生产率有深远影响,而且对提高生物乙醇产业的效率和可扩展性也有深远影响。开发优良甘蔗品种有望提高经济回报,并通过碳中和生物燃料替代品促进环境的可持续发展。本综述强调了基因工程在彻底改变甘蔗作为生物能源作物方面的变革性作用。基因工程工具和方法的发展对于充分挖掘甘蔗的潜力,从而支持全球为可持续能源解决方案所做的努力至关重要。未来的研究应侧重于完善这些生物技术工具,以可持续的方式满足日益增长的能源需求,确保粮食安全,并减轻对环境的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing Genetic Tools for Sustainable Bioenergy: A Review of Sugarcane Biotechnology in Biofuel Production
Sugarcane (Saccharum spp.) is a prominent renewable biomass source valued for its potential in sustainable and efficient second-generation biofuel production. This review aims to assess the genetic enhancement potential of sugarcane, emphasizing the use of advanced genetic engineering tools, such as CRISPR-Cas9, to improve traits crucial for biomass yield and biofuel production. The methodology of this review involved a thorough analysis of the recent literature, focusing on the advancements in genetic engineering and biotechnological applications pertinent to sugarcane. The findings reveal that CRISPR-Cas9 technology is particularly effective in enhancing the genetic traits of sugarcane, which are essential for biofuel production. Implementing these genomic tools has shown a significant rise in biomass output and, ultimately, the effectiveness of bioethanol manufacturing, establishing sugarcane as a feasible and reliable source of biofuel implications of these advancements extend. These advancements have a profound impact not only on agricultural productivity but also on enhancing the efficiency and scalability of the bioethanol industry. Developing superior sugarcane varieties is expected to boost economic returns and advance environmental sustainability through carbon-neutral biofuel alternatives. This review underscores the transformative role of genetic engineering in revolutionizing sugarcane as a bioenergy crop. The evolution of genetic engineering tools and methodologies is crucial for tapping into the full potential of sugarcane, and thereby supporting global efforts towards sustainable energy solutions. Future research should focus on refining these biotechnological tools to meet increasing energy demands sustainably, ensure food security, and mitigate negative environmental impacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Distribution and Pollution Pathway Analysis of Perfluoroalkyl Acids (PFAAs) in a Typical Agricultural Plastic Greenhouse for Cultivated Vegetables Review of the Report on the Nutritional and Health-Promoting Values of Species of the Rubus L. Genus Farmers’ Willingness to Engage in Ecological Compensation for Crop Rotation in China’s Black Soil Regions Influence of Growth Stages and Additives on the Fermentation Quality and Microbial Profiles of Whole-Plant Millet Silage The Brown Marmorated Stink Bug (Hemiptera: Pentatomidae)—A Major Challenge for Global Plant Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1