基因重复情况下相互作用网络的系统发生学预测

bioRxiv Pub Date : 2024-08-08 DOI:10.1101/2024.08.06.606904
Tony C Gatts, Chris deRoux, Linnea E Lane, Monica Berggren, Elizabeth A Rehmann, Emily N Zak, Trinity Bartel, Luna L’Argent, Daniel B. Sloan, Evan S. Forsythe
{"title":"基因重复情况下相互作用网络的系统发生学预测","authors":"Tony C Gatts, Chris deRoux, Linnea E Lane, Monica Berggren, Elizabeth A Rehmann, Emily N Zak, Trinity Bartel, Luna L’Argent, Daniel B. Sloan, Evan S. Forsythe","doi":"10.1101/2024.08.06.606904","DOIUrl":null,"url":null,"abstract":"Assigning gene function from genome sequences is a rate-limiting step in molecular biology research. A protein’s position within an interaction network can potentially provide insights into its molecular mechanisms. Phylogenetic analyses of evolutionary rate covariation (ERC) have been shown to be effective for large-scale prediction of functional interactions from protein sequence data. However, gene duplication, gene loss, and other sources of phylogenetic incongruence are barriers for analyzing ERC on a genome-wide basis. Here, we developed ERCnet, a bioinformatic program designed to overcome these challenges, facilitating efficient all-vs-all ERC analyses for large protein sequence datasets. We compiled a sample set of 35 angiosperm genomes to test the performance of ERCnet, including its sensitivity to user-defined analysis parameters such as input dataset size, branch-length measurement strategy, and significance threshold for defining ERC hits. We find that our novel ‘branch-by-branch’ length measurements outperforms ‘root-to-tip’ approaches in most cases, offering a valuable new strategy for performing ERC even in the presence of extensive gene duplication. Further, we demonstrate that the number of genomes and the species composition both have profound effects on the genes that are predicted to interact. Our systematic exploration of the performance of ERCnet provides a roadmap for design of future ERC analyses to predict functional interactions in a wide array of genomic datasets. ERCnet code is freely available at https://github.com/EvanForsythe/ERCnet.","PeriodicalId":505198,"journal":{"name":"bioRxiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phylogenomic prediction of interaction networks in the presence of gene duplication\",\"authors\":\"Tony C Gatts, Chris deRoux, Linnea E Lane, Monica Berggren, Elizabeth A Rehmann, Emily N Zak, Trinity Bartel, Luna L’Argent, Daniel B. Sloan, Evan S. Forsythe\",\"doi\":\"10.1101/2024.08.06.606904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assigning gene function from genome sequences is a rate-limiting step in molecular biology research. A protein’s position within an interaction network can potentially provide insights into its molecular mechanisms. Phylogenetic analyses of evolutionary rate covariation (ERC) have been shown to be effective for large-scale prediction of functional interactions from protein sequence data. However, gene duplication, gene loss, and other sources of phylogenetic incongruence are barriers for analyzing ERC on a genome-wide basis. Here, we developed ERCnet, a bioinformatic program designed to overcome these challenges, facilitating efficient all-vs-all ERC analyses for large protein sequence datasets. We compiled a sample set of 35 angiosperm genomes to test the performance of ERCnet, including its sensitivity to user-defined analysis parameters such as input dataset size, branch-length measurement strategy, and significance threshold for defining ERC hits. We find that our novel ‘branch-by-branch’ length measurements outperforms ‘root-to-tip’ approaches in most cases, offering a valuable new strategy for performing ERC even in the presence of extensive gene duplication. Further, we demonstrate that the number of genomes and the species composition both have profound effects on the genes that are predicted to interact. Our systematic exploration of the performance of ERCnet provides a roadmap for design of future ERC analyses to predict functional interactions in a wide array of genomic datasets. ERCnet code is freely available at https://github.com/EvanForsythe/ERCnet.\",\"PeriodicalId\":505198,\"journal\":{\"name\":\"bioRxiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.06.606904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.06.606904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据基因组序列确定基因功能是分子生物学研究中的一个限制性步骤。蛋白质在相互作用网络中的位置有可能让人们深入了解其分子机制。进化率共变(ERC)的系统发育分析已被证明可有效地从蛋白质序列数据中大规模预测功能相互作用。然而,基因复制、基因丢失和其他系统发育不一致的来源是在全基因组基础上分析ERC的障碍。在这里,我们开发了ERCnet,这是一个生物信息学程序,旨在克服这些挑战,促进对大型蛋白质序列数据集进行高效的全基因组ERC分析。我们汇编了 35 个被子植物基因组样本集,以测试 ERCnet 的性能,包括它对用户定义的分析参数的敏感性,如输入数据集大小、分支长度测量策略和定义 ERC 命中的显著性阈值。我们发现,在大多数情况下,我们新颖的 "逐分支 "长度测量方法优于 "根到顶 "方法,即使在存在大量基因重复的情况下,也能为执行 ERC 提供有价值的新策略。此外,我们还证明了基因组数量和物种组成都会对预测相互作用的基因产生深远影响。我们对 ERCnet 性能的系统性探索为设计未来的 ERC 分析提供了一个路线图,以便在广泛的基因组数据集中预测功能性相互作用。ERCnet代码可在https://github.com/EvanForsythe/ERCnet 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phylogenomic prediction of interaction networks in the presence of gene duplication
Assigning gene function from genome sequences is a rate-limiting step in molecular biology research. A protein’s position within an interaction network can potentially provide insights into its molecular mechanisms. Phylogenetic analyses of evolutionary rate covariation (ERC) have been shown to be effective for large-scale prediction of functional interactions from protein sequence data. However, gene duplication, gene loss, and other sources of phylogenetic incongruence are barriers for analyzing ERC on a genome-wide basis. Here, we developed ERCnet, a bioinformatic program designed to overcome these challenges, facilitating efficient all-vs-all ERC analyses for large protein sequence datasets. We compiled a sample set of 35 angiosperm genomes to test the performance of ERCnet, including its sensitivity to user-defined analysis parameters such as input dataset size, branch-length measurement strategy, and significance threshold for defining ERC hits. We find that our novel ‘branch-by-branch’ length measurements outperforms ‘root-to-tip’ approaches in most cases, offering a valuable new strategy for performing ERC even in the presence of extensive gene duplication. Further, we demonstrate that the number of genomes and the species composition both have profound effects on the genes that are predicted to interact. Our systematic exploration of the performance of ERCnet provides a roadmap for design of future ERC analyses to predict functional interactions in a wide array of genomic datasets. ERCnet code is freely available at https://github.com/EvanForsythe/ERCnet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability of cross-sensory input to primary somatosensory cortex across experience Genomic re-sequencing reveals mutational divergence across genetically engineered strains of model archaea A principled approach to community detection in interareal cortical networks A minimal mathematical model for polarity establishment and centralsplindlin-independent cytokinesis PTEN neddylation aggravates CDK4/6 inhibitor resistance in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1