{"title":"用于电化学/光电化学应用的配体保护金属纳米团簇的精确合成","authors":"T. Kawawaki, Yuichi Negishi","doi":"10.1093/chemle/upae155","DOIUrl":null,"url":null,"abstract":"\n Ligand-protected metal nanoclusters (NCs) represent a significant advancement in the field of catalysis due to their unique size-specific electronic and geometric structures. These properties are highly dependent on the metal species, number of constituent atoms, and geometric structure of the metal NC. We discuss on the synthesis, stability, structural characterization, and electrocatalytic/photocatalytic applications of these fascinating materials, emphasizing their superior performance over conventional catalysts. In this study, we have obtained a deeper understanding of the interaction between the metal core and the organic ligands protecting the metal NCs, as well as the desorption behavior of the ligands under calcination, which is crucial for the application of metal NCs as heterogeneous catalysts. Based on this understanding, we have demonstrated that metal NCs-supported catalysts with appropriate pretreatment exhibit higher activity as photocatalysts compared to conventional catalysts. Moreover, by suppressing oxygen poisoning through the use of sulfur species in the ligands, Pt NCs showed high activity as cocatalysts for photocatalytic hydrogen evolution in water splitting. Additionally, atomically precised phosphine-protected Pt NCs exhibited high activity as cathode electrocatalysts for fuel cells. These findings are expected to significantly contribute to the development of more diverse catalysts based on metal NCs, including those with varying metal species, numbers of constituent atoms, and geometric structures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise Synthesis of Ligand-Protected Metal Nanoclusters for Electrochemical/Photoelectrochemical Applications\",\"authors\":\"T. Kawawaki, Yuichi Negishi\",\"doi\":\"10.1093/chemle/upae155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Ligand-protected metal nanoclusters (NCs) represent a significant advancement in the field of catalysis due to their unique size-specific electronic and geometric structures. These properties are highly dependent on the metal species, number of constituent atoms, and geometric structure of the metal NC. We discuss on the synthesis, stability, structural characterization, and electrocatalytic/photocatalytic applications of these fascinating materials, emphasizing their superior performance over conventional catalysts. In this study, we have obtained a deeper understanding of the interaction between the metal core and the organic ligands protecting the metal NCs, as well as the desorption behavior of the ligands under calcination, which is crucial for the application of metal NCs as heterogeneous catalysts. Based on this understanding, we have demonstrated that metal NCs-supported catalysts with appropriate pretreatment exhibit higher activity as photocatalysts compared to conventional catalysts. Moreover, by suppressing oxygen poisoning through the use of sulfur species in the ligands, Pt NCs showed high activity as cocatalysts for photocatalytic hydrogen evolution in water splitting. Additionally, atomically precised phosphine-protected Pt NCs exhibited high activity as cathode electrocatalysts for fuel cells. These findings are expected to significantly contribute to the development of more diverse catalysts based on metal NCs, including those with varying metal species, numbers of constituent atoms, and geometric structures.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chemle/upae155\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chemle/upae155","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Precise Synthesis of Ligand-Protected Metal Nanoclusters for Electrochemical/Photoelectrochemical Applications
Ligand-protected metal nanoclusters (NCs) represent a significant advancement in the field of catalysis due to their unique size-specific electronic and geometric structures. These properties are highly dependent on the metal species, number of constituent atoms, and geometric structure of the metal NC. We discuss on the synthesis, stability, structural characterization, and electrocatalytic/photocatalytic applications of these fascinating materials, emphasizing their superior performance over conventional catalysts. In this study, we have obtained a deeper understanding of the interaction between the metal core and the organic ligands protecting the metal NCs, as well as the desorption behavior of the ligands under calcination, which is crucial for the application of metal NCs as heterogeneous catalysts. Based on this understanding, we have demonstrated that metal NCs-supported catalysts with appropriate pretreatment exhibit higher activity as photocatalysts compared to conventional catalysts. Moreover, by suppressing oxygen poisoning through the use of sulfur species in the ligands, Pt NCs showed high activity as cocatalysts for photocatalytic hydrogen evolution in water splitting. Additionally, atomically precised phosphine-protected Pt NCs exhibited high activity as cathode electrocatalysts for fuel cells. These findings are expected to significantly contribute to the development of more diverse catalysts based on metal NCs, including those with varying metal species, numbers of constituent atoms, and geometric structures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.