Jingyu Yang, Taixia Wu, Xiying Sun, Kai Liu, Muhammad Farhan, Xuan Zhao, Quanshan Gao, Yingying Yang, Yuhan Shao, Shudong Wang
{"title":"2001-2022 年全球 24 节气物候 MODIS 归一化差异植被指数数据集","authors":"Jingyu Yang, Taixia Wu, Xiying Sun, Kai Liu, Muhammad Farhan, Xuan Zhao, Quanshan Gao, Yingying Yang, Yuhan Shao, Shudong Wang","doi":"10.1002/gdj3.268","DOIUrl":null,"url":null,"abstract":"<p>Phenology reflects the life cycle of vegetation, crucial for monitoring global vegetation diversity, ecosystem stability, and agricultural security. However, there is currently no dataset related to phenology. The 24 solar terms (24STs), based on the Sun's annual motion, reflect the changing seasons, temperature fluctuations, and phenological phenomena. They serve as a vital means to characterize vegetation phenology. This study generate a global Normalized Difference Vegetation Index (NDVI) product based on 24STs using Moderate Resolution Imaging Spectroradiometer (MODIS) on the Google Earth Engine (GEE). The 24STs NDVI dataset adopted the maximum value compositing (MVC) to process the NDVI values between two adjacent 24STs. The product has a spatial resolution of 250 m, covering the period from 2001 to 2022. Comparing with the MOD13Q1, good spatiotemporal consistency between the two datasets was observed, confirming the reliability of the 24STs product. However, the 24STs product holds distinct phenological meanings. This product introduces, for the first time, a vegetation index dataset based on the 24STs, enriching the vegetation index dataset and facilitating further research on phenology.</p>","PeriodicalId":54351,"journal":{"name":"Geoscience Data Journal","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.268","citationCount":"0","resultStr":"{\"title\":\"Global 24 solar terms phenological MODIS normalized difference vegetation index dataset in 2001–2022\",\"authors\":\"Jingyu Yang, Taixia Wu, Xiying Sun, Kai Liu, Muhammad Farhan, Xuan Zhao, Quanshan Gao, Yingying Yang, Yuhan Shao, Shudong Wang\",\"doi\":\"10.1002/gdj3.268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phenology reflects the life cycle of vegetation, crucial for monitoring global vegetation diversity, ecosystem stability, and agricultural security. However, there is currently no dataset related to phenology. The 24 solar terms (24STs), based on the Sun's annual motion, reflect the changing seasons, temperature fluctuations, and phenological phenomena. They serve as a vital means to characterize vegetation phenology. This study generate a global Normalized Difference Vegetation Index (NDVI) product based on 24STs using Moderate Resolution Imaging Spectroradiometer (MODIS) on the Google Earth Engine (GEE). The 24STs NDVI dataset adopted the maximum value compositing (MVC) to process the NDVI values between two adjacent 24STs. The product has a spatial resolution of 250 m, covering the period from 2001 to 2022. Comparing with the MOD13Q1, good spatiotemporal consistency between the two datasets was observed, confirming the reliability of the 24STs product. However, the 24STs product holds distinct phenological meanings. This product introduces, for the first time, a vegetation index dataset based on the 24STs, enriching the vegetation index dataset and facilitating further research on phenology.</p>\",\"PeriodicalId\":54351,\"journal\":{\"name\":\"Geoscience Data Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gdj3.268\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience Data Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.268\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Data Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gdj3.268","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Global 24 solar terms phenological MODIS normalized difference vegetation index dataset in 2001–2022
Phenology reflects the life cycle of vegetation, crucial for monitoring global vegetation diversity, ecosystem stability, and agricultural security. However, there is currently no dataset related to phenology. The 24 solar terms (24STs), based on the Sun's annual motion, reflect the changing seasons, temperature fluctuations, and phenological phenomena. They serve as a vital means to characterize vegetation phenology. This study generate a global Normalized Difference Vegetation Index (NDVI) product based on 24STs using Moderate Resolution Imaging Spectroradiometer (MODIS) on the Google Earth Engine (GEE). The 24STs NDVI dataset adopted the maximum value compositing (MVC) to process the NDVI values between two adjacent 24STs. The product has a spatial resolution of 250 m, covering the period from 2001 to 2022. Comparing with the MOD13Q1, good spatiotemporal consistency between the two datasets was observed, confirming the reliability of the 24STs product. However, the 24STs product holds distinct phenological meanings. This product introduces, for the first time, a vegetation index dataset based on the 24STs, enriching the vegetation index dataset and facilitating further research on phenology.
Geoscience Data JournalGEOSCIENCES, MULTIDISCIPLINARYMETEOROLOGY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
5.90
自引率
9.40%
发文量
35
审稿时长
4 weeks
期刊介绍:
Geoscience Data Journal provides an Open Access platform where scientific data can be formally published, in a way that includes scientific peer-review. Thus the dataset creator attains full credit for their efforts, while also improving the scientific record, providing version control for the community and allowing major datasets to be fully described, cited and discovered.
An online-only journal, GDJ publishes short data papers cross-linked to – and citing – datasets that have been deposited in approved data centres and awarded DOIs. The journal will also accept articles on data services, and articles which support and inform data publishing best practices.
Data is at the heart of science and scientific endeavour. The curation of data and the science associated with it is as important as ever in our understanding of the changing earth system and thereby enabling us to make future predictions. Geoscience Data Journal is working with recognised Data Centres across the globe to develop the future strategy for data publication, the recognition of the value of data and the communication and exploitation of data to the wider science and stakeholder communities.